Skip to main content
Log in

Effect of enzyme organization on the stability of Yates-Pardee pathways

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Yates-Pardee-type metabolic pathways in a heterogenous cell milieu are modeled as a system of coupled non-linear partial differential equations. A numerical solution to this systmm is described and some properties of such a physiological system are studied. Confinement with and without a membrane is considered and it is shown how confinement results in an increase in the stability of the metabolite concentrations. These results suggest that the enzyme organization may contribute to the stability of the cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batke, J. 1991. Channelling by loose enzyme complexesin situ is likely, though physiological significance is open for speculation.J. Theor. Biol. 152, 41–46.

    Google Scholar 

  • Burger, J. and C. Machbub. 1991. Comparison of numerical solutions of a one-dimensional nonlinear heat equation.Communications in Applied Numerical Methods,7, 233–240.

    Article  MATH  Google Scholar 

  • Chauvet, G. 1993. Hierarchical functional organization of formal biological systems: a dynamical approach. I. The increase in complexity by self-association increases the domain of stability of a biological system.Philos. Trans. Soc. London Ser. B 339, 425–444.

    Google Scholar 

  • Costalat, R., J.-P. Morillon and J. Burger. 1993. Effect of self-organization on the stability of metabolic units.European Congress on Artificial Life. J. L. Deneubourg (Ed), pp. 236–244. Bruxelles.

  • Dibrov, B. F., A. M. Zhabotinskii and B. N. Kholodenko. 1981a. Dynamic stability of metabolic chain with one feedback loop.Biophysics 26, 598–604.

    Google Scholar 

  • Dibrov, B. F., A. M. Zhabotinskii and B. N. Kholodenko. 1981b. Dynamic stability and parametric stabilization of the steady states of unbranched metabolic pathways.Biophysics 26, 804–810.

    Google Scholar 

  • Goldbeter, A. 1973. Patterns of spatiotemporal organization in an allosteric enzyme model.Proc. Nat. Acad. Sci. U.S.A. 70, 3255–3259.

    Article  Google Scholar 

  • Goodwin, B. C. 1976.Analytical Physiology of Cells and Developing Organisms. London: Academic Press.

    Google Scholar 

  • Marmillot, Ph., J.-F. Hervagault and G. R. Welch. 1992. Patterns of spatiotemporal organization in an “ambiquitous” enzyme model.Proc. Nat. Acad. Sci. U.S.A. 89, 12103–12107.

    Article  Google Scholar 

  • Monod, J., J.-P. Changeux and F. Jacob, 1963. Allosteric proteins and cellular control systems.J. Mol. Biol. 6, 306–329.

    Article  Google Scholar 

  • Morillon, J.-P., R. Costalat, N. Burger and J. Burger. 1994. Modelling two associated biochemical pathways.MATHMOD Conference, Proceedings of the IMACS Symposium on Mathematical Modelling, Vol. 3. I. Troch and F. Breitenecker (Eds). Vienna, Austria.

  • Ovádi, J. 1991. Physiological significance of metabolic channelling.,J. Theor. Biol. 152, 1–22.

    Google Scholar 

  • Rapp, P. 1976. Analysis of biochemical phase shift oscillators by a harmonic balancing technique.J. Math. Biol. 3, 203–224.

    MATH  MathSciNet  Google Scholar 

  • Rapp, P. 1980. Biological applications of control theory. InMathematical Models in Molecular and Cellular Biology. L. A. Segel (Ed), pp. 146–247. Cambridge: Cambridge University Press.

    Google Scholar 

  • Raviart, P. A. and J.-M. Thomas. 1988.Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles. Paris: Masson.

    Google Scholar 

  • Savageau, M. A. 1976.Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Segel, L. A. 1988. On the validity of the steady state assumption of the enzyme kinetics.Bull. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Umbarger, J. E. 1956. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine.Science 123, 848.

    Google Scholar 

  • Viniegra-Gonzalez, G. 1973. Stability properties of metabolic pathways with feedback interactions. InBiological and Biochemical Oscillators.Proceedings of Two Symposia, Prague, Czechoslovakia. B. Chance (Ed.), pp. 41–59. New York: Academic Press.

    Google Scholar 

  • Walter, C. F. 1969a. Stability of controlled biological systems.J. Theor. Biol. 23, 23–38.

    Article  Google Scholar 

  • Walter, C. F. 1969b. The absolute stability of certain types of controlled biological systems.J. Theor. Biol. 23, 39–52.

    Article  Google Scholar 

  • Walter, C.F. 1970. The occurrence and the significance of limit cycle behavior in controlled biochemical systems.J. Theor. Biol. 27, 259–272.

    Article  Google Scholar 

  • Walter, C. F. 1972. Kinetic and thermodynamic aspects of biological and biochemical control mechanisms. InBiochemical Regulatory Mechanisms in Eukaryotic Cells. Kun, Ernest and Santiago Grisolia (Eds). pp. 355–489. New York: Wiley-Interscience.

    Google Scholar 

  • Walter, C. F. 1974. Some dynamic properties of linear, hyperbolic and sigmoidal multienzyme systems with feedback control.J. Theor. Biol. 44, 219–240.

    Article  Google Scholar 

  • Walter, G. G. 1980. Stability and structure of compartmental models of ecosystems.Math. Biosci. 51, 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  • Walter, G. G. 1983. Some equivalent compartmental models.Math. Biosci. 64, 273–293.

    Article  MATH  MathSciNet  Google Scholar 

  • Welch, G. R. 1977. On the role of organized multienzyme systems in cellular metabolism: a general synthesis.Prog. Biophys. Molec. Biol. 32, 103–191.

    Article  Google Scholar 

  • Welch, G. R., T. Keleti and B. Vértessy. 1988. The control of cell metabolism for homogenous vs. heterogeneous enzyme systems.J. Theor. Biol. 130, 407–422.

    Article  Google Scholar 

  • Westerhoff, H. V. and G. R. Welch. 1992. Enzyme organization and the direction of metabolic flow: physicochemical considerations.Current Topics in Cellular Regulation 33, 361–389.

    Google Scholar 

  • Yates, P. A. and A. B. Pardee. 1956. Control of pyrimidine biosynthesis inescherichia coli by a feed-back mechanism.J. Biol. Chem. 221, 757–770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costalat, R., Burger, J. Effect of enzyme organization on the stability of Yates-Pardee pathways. Bltn Mathcal Biology 58, 719–737 (1996). https://doi.org/10.1007/BF02459479

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459479

Keywords

Navigation