Skip to main content
Log in

Periodic band pattern as a dissipative structure in ion transport systems with cylindrical shape

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A theory is presented for appearance of periodic band patterns of ion concentration and electric potential associated with electric current surrounding a unicellular or multicellular system of a cylindrical shape. A flux continuity at the membrane (or the surface) is reduced to a nonlinear equation expressing passive and active fluxes across the membrane and intracellular diffusion flux. It is shown that, when an external parameter is varied from the sub-critical region, i.e. the homogeneous flux state, a symmetry breaking along a longitudinal axis usually appears prior to the one along a circumferential direction. The spectrum analysis shows that the correlation length is longer in the longitudinal direction. Growth of the band pattern from a patch-shaped pattern is demonstrated by the use of numerical calculations of proton concentration on the two-dimensional space of cylindrical surface. An experimental example of formative process of H+ banding is given for the internodal cell ofChara. It is shown that small patches on the surface decline or are sometimes gathered to the band surrounding the circle. The resulting pattern is suggested as a kind of dissipative structure appearing far from equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Avnir, D. and M. Kagan. 1984. “Spatial Structures Generated by Chemical Reactions at Interfaces.”Nature,307, 717–720.

    Article  Google Scholar 

  • Bisson, M. A. and N. A. Walker. 1980. “TheChara Plasmalemma at High pH. Electrical Measurements Show Rapid Specific Passive Uniport of H+ or OH.”J. Membrane Biol.,56, 1–7.

    Article  Google Scholar 

  • Boels, H. D. and U.-P. Hansen. 1982. “Light and Electrical Current Stimulate the Same Feedback System inNitella.”Plant Cell Physiol.,23, 343–346.

    Google Scholar 

  • Chilcott, T. C., H. G. L. Coster, K. Ogata and J. R. Smith. 1983. “Spatial Variation of the Electrical Potential ofChara australis—II. Membrane Capacitance and Conductance as a Function of Frequency.”Aust. J. Plant. Physiol.,10, 353–362.

    Google Scholar 

  • Dorn, A. and M. H. Weisenseel. 1984. “Growth and the Current Pattern around Internodal Cells ofNitella flexilis L.”J. exp. Bot. 35, 373–383.

    Google Scholar 

  • Erneux, T., J. Hiernaux and G. Nicolis. 1978. “Turing's Theory in Morphogenesis.”Bull. math. Biol. 40, 771–789.

    Article  MathSciNet  Google Scholar 

  • Ferrier, J. M. 1980. “Extracellular Ion Transport.”J. theor. Biol. 85, 739–743.

    Article  Google Scholar 

  • Gransdorff, P. and I. Prigogine. 1971.Thermodynamic Theory of Structure, Stability and Fluctuations. London: Wiley-Interscience.

    Google Scholar 

  • Haken, H. 1978.Synergetics—An Introduction. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Hansen, U.-P. 1978. “Do Light-induced Changes in the Membrane Potential ofNitella Reflect the Feedback Regulation of a Cytoplasmic Parameter?”J. Membrane Biol. 41, 197–224.

    Article  Google Scholar 

  • — 1985. “Messung und Interpretation der Kinetik der Lichtwirkung auf den Elektrophoretischen Transport über die Plasmamembran der AlgeNitella.”Ber. Deutsch. Bot. Ges. 92, 105–118.

    Google Scholar 

  • Harold, F. M. 1982. “Pumps and Currents: A Biological Perspective.” InCurrent Topics in Membranes and Transport. Vol.16, C. L. Slayman (Ed.), pp. 486–516. New York: Academic Press.

    Google Scholar 

  • Hayashi, K., T. Fujiyoshi, K. Toko and K. Yamafuji. 1987. “Periodic Pattern of Electric Potential inChara Internodal Cell.”J. Phys. Soc. Jpn. 56, 810–820.

    Article  Google Scholar 

  • Herschkowitz-Kaufman, M. 1975. “Bifurcation Analysis of Nonlinear Reaction-diffusion Equation—II. Steady State Solutions and Comparison with Numerical Simulations.”Bull. math. Biol. 37, 589–636.

    Article  MATH  MathSciNet  Google Scholar 

  • Iiyama, S., K. Toko and K. Yamafuji. 1985. “Band Structure of Surface Electric Potential in Growing Roots.”Biophys. Chem. 21, 285–293.

    Article  Google Scholar 

  • Jaffe, L. F. 1979. “Control of Development by Ionic Currents.” InMembrane Transduction Mechanisms, R. A. Cone and J. E. Dowling (Eds), pp. 199–231. New York: Raven Press.

    Google Scholar 

  • Kawamura, G., T. Shimmen and M. Tazawa. 1980. “Dependence of the Membrane Potential ofChara Cells on External pH in the Presence or Absence of Internal Adenosinetriphosphate.”Planta 149, 213–218.

    Article  Google Scholar 

  • Lax, M. 1960. “Fluctuation from the Nonequilibrium Steady State.”Rev. mod. Phys. 32, 25–64.

    Article  MATH  Google Scholar 

  • Lucas, W. J. and J. Dainty. 1977. “Spatial Distribution of Functional OH Carriers along a Characean Internodal Cell: Determined by the Effect of Cytochalasin B on H14CO3 Assimilation.”J. Membrane Biol. 32, 75–92.

    Article  Google Scholar 

  • Maginu, K. 1975. “Reaction-diffusion Equation Describing Morphogenesis—I. Waveform Stability of Stationary Wave Solutions in a One-dimensional Model.”Math. Biosci. 27, 17–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Metraux, J.-P., P. A. Richmond and L. Taiz. 1980. “Control of Cell Elongation inNitella by Endogeneous Cell Wall pH Gradients.”Plant Physiol. 65, 204–210.

    Article  Google Scholar 

  • Nicolis, G. and I. Prigogine. 1977.Self-organization in Nonequilibrium Systems. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Nuccitelli, R. and L. F. Jaffe. 1975. “The Pulse Current Pattern Generated by Developing Fucoid Eggs.”J. Cell Biol. 64, 636–643.

    Article  Google Scholar 

  • Ogata, K. 1983. “The Water-film Electrode, a New Device for Measuring the Characean Electro-potential and-cunductance Distributions along the Length of the Internode.”Plant Cell Physiol. 24, 695–703.

    Google Scholar 

  • —, T. C. Chilcott and H. G. L. Coster. 1983. “Spatial Variation of the Electrical Properties ofChara australis—I. Electrical Potential and Membrane Conductance.”Aust. J. Plant Physiol. 10, 339–351.

    Article  Google Scholar 

  • — and U. Kishimoto. 1976. “Rythmic Change of Membrane Potential and Cyclosis ofNitella Internode.”Plant Cell Physiol. 17, 201–207.

    Google Scholar 

  • —, K. Toko, T. Fujiyoshi and K. Yamafuji. 1987. “Electric Inhomogeneity in Membrane of Characean Internode Influenced by Light/dark Transition, O2, N2, CO2-free Air and Extracellular pH.”Biophys. Chem.,26, 71–81.

    Article  Google Scholar 

  • Oosawa, F. 1975. “The Effect of Field Fluctuation on a Macromolecular System.”J. theor. Biol. 52, 175–186.

    Article  Google Scholar 

  • — and Y. Nakaoka. 1977. “Behavior of Micro-organisms as Particles with Internal State Variables.”J. theor. Biol. 66, 747–761.

    Article  Google Scholar 

  • Palaniandavar, N., F. D. Gnanam and P. Ramadamy. 1984. “Diffusion Controlled Asutocatalytic Growth of Recent Periodic Precipitation of Cadmium Sulphide in Iyophillic Colloid.”J. chem. Phys. 80, 3446–3450.

    Article  Google Scholar 

  • Paeceman, D. W. and H. H. Rachford. 1955. “The Numerical Solution of Parabolic and Elliptic Differential Equations.”J. Soc. indust. appl. Math. 3, 28–41.

    Article  MathSciNet  Google Scholar 

  • Smith, P. T. and N. A. Walker. 1981. “Studies on the Perfused Plasmalemma ofChara corallina—1. Current-voltage Curves: ATP and Potassium Dependence.”J. Membrane Biol. 60, 223–236.

    Article  Google Scholar 

  • Spear, D. G., J. K. Barr and C. E. Barr. 1969. “Localization of Hydrogen Ion and Chloride Ion Fluxes inNitella.”J. gen. Physiol. 54, 397–417.

    Article  Google Scholar 

  • Stanley, H. E. 1971.Introduction to Phase Transitions and Critical Phenomena. Oxford: Clarendon Press.

    Google Scholar 

  • Takeshige, K., T. Shimmen and M. Tazawa. 1986. “Quantitative Analysis of ATP-dependent H+ Efflux and Pump Current Driven by an Electrogenic Pump inNitellopsis obtusa.”Plant Cell Physiol. 27, 337–348.

    Google Scholar 

  • Toko, K., H. Chosa and K. Yamafuji. 1985. “Dissipative Structure in theCharaceae, Spatial Pattern of Proton Flux as a Dissipative Structure in Characean Cells.”J. theor. Biol. 114, 127–175.

    Article  Google Scholar 

  • —, T. Fujiyoshi, K. Ogata, H. Chosa and K. Yamafuji. 1987a. “Theory of Electric Dissipative Structure in Characean Internode.”Biophys. Chem.,27, 149–172.

    Article  Google Scholar 

  • —, K. Hayashi and K. Yamafuji. 1986. “Spatio-temporal Organization of Electricity in Biological Growth.”Trans. IECE Jap. E69, 485–487.

    Google Scholar 

  • Toko, K., K. Hayashi, T. Yoshida, T. Fujiyoshi and K. Yamafuji. 1988. “Oscillations of Electric Spatial Pattern Emerging from the Homogeneous State in Characean Cells.”Eur. Biophys. J. 16 (in press).

  • —, S. Iiyama, C. Tanaka, K. Yayashi, K. Yamafuji and K. Yamafuji. 1987b. “Relation of Growth Process to Spatial Patterns of Electric Potential and Enzyme Activity in Bean Roots.”Biophys. Chem. 27, 39–58.

    Article  Google Scholar 

  • —— and K. Yamafuji. 1984. “Band-type Dissipative Structure in Ion Transport Systems with Cylindrical Shape.”J. phys. Soc. Jpn. 53, 4070–4082.

    Article  Google Scholar 

  • —, K. Ryu, S. Ezaki and K. Yamafuji. 1982. “Self-sustained Oscillations of Membrane Potential in DOPH-Millipore Membranes.”J. phys. Soc. Jpn. 51, 3398–3405.

    Article  Google Scholar 

  • — and K. Yamafuji. 1982. “Self-organization in a Rhizoid Formation ofFucus Eggs”.J. phys. Soc. Jpn. 51, 3049–3056.

    Article  MathSciNet  Google Scholar 

  • Toko, K. and K. Yamafuji. 1988. “Spontaneous Formation of the Spatial Pattern of Electric Potential in Biological Systems.”Ferroelectrics (in press).

  • Walgraef, D., G. Dewel and P. Borkmans. 1980. “Fluctuations near Nonequilibrium Phase Transitions to Nonuniform States.”Phys. Rev. 21, 397–404.

    Article  Google Scholar 

  • Walker, N. A. and F. A. Smith. 1975. “Intracellular pH inChara corallina Measured by DMO Distribution.”Plant Sci. Lett. 4, 125–132.

    Article  Google Scholar 

  • — and——. 1977. “Circulating Electric Currents between Acid and Alkaline Zones Associated with HCO 3 Assimilation inChara.”J. exp. Bot. 28, 1190–1206.

    Google Scholar 

  • Welsh, B. J., J. Gomatam and A. E. Burgers. 1983. “Three-dimensional Chemical Waves in the Belousov-Zhabotinskii Reaction.”Nature 304, 611–614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toko, K., Nosaka, M., Fujiyoshi, T. et al. Periodic band pattern as a dissipative structure in ion transport systems with cylindrical shape. Bltn Mathcal Biology 50, 255–288 (1988). https://doi.org/10.1007/BF02458883

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458883

Keywords

Navigation