Skip to main content
Log in

Parameter-dependent transitions and the optimal control of dynamical diseases

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many theoretical studies in biological and physical sciences consider the dynamical behavior of ann-dimensional ordinary differential equation that contains a large number of independent parameters. A frequently asked question is, are there permissible parameter sets that result in periodic or chaotic behavior? The large number of distinct parameters often limits the feasibility of trial and error calculations. The large dimension and nonlinearity of the system make application of analytic methods at best difficult and at worst effectively impossible. It is shown here that a computational search for parameter-dependent transitions of attractor topology can be effected by constrained optimization of quantitative measures of dynamical behavior (Hurwitz polynomials, Floquet coefficients, Lyapunov exponents and correlation dimension). As an example, we examine a three-dimensional nonlinear ordinary differential equation containing seven parameters that was constructed by Goldbeter and Segel to model periodic synthesis of cyclic AMP inDictyostelium. A search for bifurcations to periodic solutions is made by minimizing Hurwitz coefficients subject to parameter constraints. By comparing four optimization algorithms, the defects and advantages of the procedure are identified.

It is also argued that it may be possible to use this characterization of dynamics to construct optimal responses to dynamical diseases (those disorders that result from parameter-dependent bifurcations in physiological control systems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Albano, A. M., A. I. Mees, G. C. deGuzman and P. E. Rapp. 1987. “Data Requirements for Reliable Estimation of Correlation Dimensions.” In: A. V. Holden (ed.)Chaotic Biological Systems. New York: Pergamon Press.

    Google Scholar 

  • Allwright, D. J. 1977. “Harmonic Balance and the Hopf Bifurcation.”Math. Proc. Camb. Phil. Soc. 82, 453–467.

    Article  MATH  MathSciNet  Google Scholar 

  • Aronson, D. B., E. J. Doedel and H. G. Othmer. 1987. “An Analytical and Numerical Study of the Bifurcations in a System of Linearly-coupled Oscillators.”Physica 25D, 20–34.

    MathSciNet  Google Scholar 

  • Balatoni, J. and A. Renyi. 1956. “On the Notion of Entropy.”Publ. Math. Inst. Hung. Acad. Sci. 1, 9–40. (English translation:Selected Papers of A. Renyi.1, 558–586. Budapest: Akademiai).

    MATH  Google Scholar 

  • Bellomo, G., P. Brunetti, G. Calabrese, D. Mazzotti, E. Sarti and A. Vincenzi. 1982. “Optimal Feedback of Glycemia Regulation in Diabetics.”Med. Biol. Eng. Comput. 20, 329–335.

    Article  Google Scholar 

  • Benettin, G., L. Galgani, A. Giorgilli and J.-M. Strelcyn. 1980a. “Lyapunov Characteristic Exponents for Smooth Dynamical Systems; A Method for Computing All of Them. Part 1—Theory.”Meccanica 15, 9–20.

    Article  MATH  Google Scholar 

  • “Lyapunov Characteristic Exponents for Smooth Dynamical Systems; A Method for Computing All of Them. Part 2—Numerical Application.”Meccanica 15, 21–30.

  • — and J.-M. Strelcyn. 1976. “Kolmogorov Entropy and Numerical Experiments.”Phys. Rev. Series A. 14, 2338–2345.

    Article  Google Scholar 

  • Berridge, M. J. and P. E. Rapp. 1979. “A Comparative Survey of the Function, Mechanism and Control of Cellular Oscillators.”J. exp. Biol. 81, 217–279.

    Google Scholar 

  • Blangy, D., H. Buc and J. Monod. 1968. “Kinetics of the Allosteric Interactions of Phosphofructokinase fromEscherichia coli.”J. mol. Biol. 31, 13–35.

    Article  Google Scholar 

  • Box, M. J. 1965. “A New Method of Constrained Optimization and a Comparison With Other Methods.”Computer J. 8, 42–52.

    MATH  MathSciNet  Google Scholar 

  • Chay, T. R. and Y. S. Lee. 1984. “Impulse Responses of Automaticity in the Purkinje Fiber.”Biophys. J. 45, 841–849.

    Article  Google Scholar 

  • Cherrualt, Y. 1986.Mathematical Modelling in Biomedicine. Optimal Control of Biomedical Systems. Hingham, MA: Reidel.

    Google Scholar 

  • Cronin, J. 1975. “Periodic Solutions inn-Dimensions and Volterra Equations.”J. diff. Eqns. 19, 21–35.

    Article  MATH  MathSciNet  Google Scholar 

  • —, 1977. “Mathematical Aspects of Periodic Catatonic Schizophrenia.”Bull. math. Biol. 39, 187–199.

    Article  MATH  MathSciNet  Google Scholar 

  • Cutteridge, O. P. D. 1959. “The Stability Criteria for Linear Systems”Proceedings IEE.106, Part C., No. 10. 125–132.

    MathSciNet  Google Scholar 

  • Danziger, L. and G. L. Elmergreen. 1954. “Mathematical Theory of Periodic Relapsing Catatonia.”Bull. math. Biophys. 16, 15–21.

    Google Scholar 

  • — and —. 1956. “The Thyroid-pituitary Homeostatic Mechanism.”Bull. math. Biophys. 18, 1–13.

    Google Scholar 

  • — and —. 1957. “Mathematical Models of Endocrine Systems.”Bull. math. Biophys. 19, 9–18.

    MathSciNet  Google Scholar 

  • — and —. 1958. “Mechanism of Periodic Catatonia.”Confinia Neurol. 18, 159–166.

    Google Scholar 

  • Dibrov, B. R., A. M. Zhabotinsky, Y. A. Neyfah, M. P. Orlova and L. I. Churikova 1983. “Optimal Scheduling for Cell Synchronization by Cycle-phase-specific Blockers.”Math. Biosci. 66, 167–185.

    Article  MATH  Google Scholar 

  • Doedel, E. 1984. “The Computer-aided Bifurcation-analysis of Predator-prey Models.”J. math. Biol. 20, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Duchting, W. 1979. “Modelling and Simulation of Normal and Malignant Tissue,” In: M. H. Hamza and S. G. Tzafestas (Eds)Advances in Measurement and Control, Vol. 3, pp. 904–918. Anaheim, CA: ACTA Press.

    Google Scholar 

  • Dyer, P. and S. R. McReynolds. 1970.Computation and Theory of Optimal Control. Mathematics in Science and Engineering. New York: Academic Press.

    Google Scholar 

  • Elkaim, M., A. Goldbeter and E. Goldbeter-Merinfeld. 1987. “Analysis of the Dynamics of a Family System in Terms of Bifurcations.”J. Social Biol. Struct. 10, 21–36.

    Article  Google Scholar 

  • Farmer, J. D. 1982a. “Dimension, fractal measures and chaotic dynamics” In: H. Haken (ed.)Evolution of Order and Chaos, pp. 228–246. Berlin: Springer Verlag.

    Google Scholar 

  • — 1982b. “Information Dimension and the Probabilistic Structure of Chaos.”Z. Naturforsch.37A, 1304–1325.

    MathSciNet  Google Scholar 

  • Federer, H. 1969.Geometric Measure Theory. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Fiacco, A. V. and G. P. McCormick. 1968.Nonlinear Sequential Unconstrained Minimization Techniques. New York: Wiley.

    MATH  Google Scholar 

  • Fletcher, R. 1981.Practical Methods of Optimization. Volume 2, Constrained Optimization. New York: Wiley.

    Google Scholar 

  • — and M. J. D. Powell. 1963. A Rapidly Convergent Descent Method for Minimization.Computer J. 6, 163–168.

    MATH  MathSciNet  Google Scholar 

  • Floquet, G. 1883. “Sur Les Equations Differentielles Lineaires a Coefficients Periodiques.”Ann. Sci. Ecole Norm. Sup. 12, 47–82.

    MATH  MathSciNet  Google Scholar 

  • Froehling, H., J. P. Crutchfield, J. D. Farmer, N. H. Packard and R. Shaw. 1981. “On Determining the Dimension of Chaotic Flows.”Physica 3D, 605–617.

    MathSciNet  Google Scholar 

  • Frohlich, E., R. Tavazi and H. Dustan. 1969. “Hyperdynamic Beta-adrenergic Circulatory State.”Arch. Int. Med. 123, 1–17.

    Article  Google Scholar 

  • Gear, C. W. 1971a. “The Automatic Integration of Ordinary Differential Equations.”Commun. ACM.14, 176–179.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1971b. “Algorithm 407 DIFSUB for Solution of Ordinary Differential Equations.”Commun. ACM.14, 185–190.

    Article  MathSciNet  Google Scholar 

  • Gjessing, R. 1932. “Beitrage zur Kenntnis der Pathophysiologie des Katatonen Stupors—I. Mitteilung über Periodische rezidivierenden Katonen Stupor, mit Kritischen Begeun und Abschluss.”Arch Psychiat. Nervenkrankh. 96, 319–392.

    Article  Google Scholar 

  • Glass, L., C. Graves, G. A. Petrillo and M. C. Mackey. 1980. “Unstable Dynamics of a Periodically Driven Oscillator in the Presence of Noise.”J. theor. Biol. 86, 455–475.

    Article  MathSciNet  Google Scholar 

  • —, M. R. Guevara, A. Shrier and R. Perez. 1983. “Bifurcation and Chaos in Periodically Stimulated Cardiac Oscillators.”Physica 7D, 89–101.

    Google Scholar 

  • — and M. C. Mackey. 1979. “Pathological Conditions Resulting from Instabilities in Physiological Control Systems.”Ann. N.Y. Acad. Sci. 316, 214–235.

    MATH  Google Scholar 

  • —, A. Shrier and J. Belair. 1986. “Chaotic Cardiac Rhythms.” In: A. V. Holden (Ed.),Chaos, An Introduction, pp. 237–256. Manchester: Manchester University Press.

    Google Scholar 

  • Goldberger, A. L., V. Bhargava, B. J. West and A. J. Mandell. 1985. “Nonlinear Dynamics of the Heartbeat—II. Subharmonic Bifurcations of the Cardiac Interbeat Interval in Sinus Node Disease.”Physica 17D, 207–214.

    MathSciNet  Google Scholar 

  • — 1986. “Some observations on the Question: Is Ventricular Fibrillation Chaos?”Physica 19D, 282–289.

    MathSciNet  Google Scholar 

  • —, L. J. Findley, M. R. Blackburn and A. J. Mandell. 1984. “Nonlinear Dynamics in Heart in Heart Failure: Implications of Long-wavelength Cardiopulmonary Oscillations.”Am. Heart J. 107, 612–615.

    Article  Google Scholar 

  • Goldbeter, A. and L. A. Segel. 1977. “Unified Mechanism for Relay and Oscillation of Cyclic AMP inDictyostelium discoideum.”Proc. natn. Acad. Sci. U.S.A. 74, 1543–1547.

    Article  Google Scholar 

  • — and —. 1980. “Control of Developmental Transitions in the Cyclic AMP Signalling System ofDictyostelium discoideum.”Differentiation 17, 127–135.

    Article  Google Scholar 

  • Grassberger, P. 1986. “Do Climatic Attractors Exist?“Nature, Lond. 323, 609–612.

    Article  Google Scholar 

  • — and I. Procaccia. 1983a. “Measuring the Strangeness of Strange Attractors.”Physica 9D, 189–208.

    MathSciNet  Google Scholar 

  • — and —. 1983b. “Characterization of Strange Attractors.”Phys. Rev. Lett. 50, 346–349.

    Article  MathSciNet  Google Scholar 

  • — and —. 1983c. “Estimation of Kolmogorov Entropy from a Chaotic Signal.”Phys. Rev. 28A, 2591–2593.

    Google Scholar 

  • Grebogi, C., E. Ott, S. Delikan and J. A. Yorke. 1984. “Strange Attractors That are Not Chaotic.”Physica 13D, 261–268.

    Google Scholar 

  • Guevara, M. R. and L. Glass. 1982. “Phase Locking, Period Doubling Bifurcations and Chaos in a Mathematical Model of a Periodically Driven Oscillator. A Theory for the Entrainment of Biological Oscillators and the Generation of Cardiac Dysrhythmias.”J. math. Biol. 14, 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  • ——, M. C. Mackey and A. Shrier. 1983. “Chaos in Neurobiology.”IEEE Trans. Systems, Man, Cybernetics.SMC-13, 790–798.

    MATH  Google Scholar 

  • —— and A. Shrier. 1981. “Phase Locking, Period Doubling Bifurcations and irregular Dynamics in Periodically Stimulated Cardiac Cells.Science, Wash. 214, 1350–1353.

    Google Scholar 

  • Guillemin, E. A. 1949.The Mathematics of Circuit Analysis, New York: Wiley.

    MATH  Google Scholar 

  • Guyton, A. C., J. W. Crowell and J. W. More. 1956. Basic Oscillating Mechanism of Cheyne-Stokes Breathing.Am. J. Physiol. 187, 395–398.

    Google Scholar 

  • Haarhoff, P. C., J. D. Buys and H. von Molendorff. 1973. “Code for the Constrained Fletcher-Powell Algorithm. In: J. L. Kuester and J. H. Mize (Eds)Optimization Techniques with Fortran, pp. 464–495. New York: McGraw-Hill.

    Google Scholar 

  • Hartman, P. 1982.Ordinary Differential Equations, Second Edition. Boston: Birkhauser.

    MATH  Google Scholar 

  • Hausdorff, F. 1918. “Dimension und Ausseres Mass.”Math. Annlen. 79, 157–179.

    Article  MATH  MathSciNet  Google Scholar 

  • Henon, M. and C. Heiles. 1964. “The Applicability of the Third Integral of Motion: Some Numerical Experiments.”Astron. J. 69, 73–79.

    Article  MathSciNet  Google Scholar 

  • Hirsch, M. W. and S. Smale. 1974.Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press.

    MATH  Google Scholar 

  • Hsu, J. and A. Meyer. 1968.Modern Control Principles and Applications. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Hurewicz, W. and H. Wallman. 1941.Dimension Theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Hurwitz, A. 1895. “Über die Bedingungen unter welchen eine Gleichung nur Wurzeln mit Negativen Reelen Theilen Besitzt.”Math. Annalen. 46, 273–284.

    Article  MATH  MathSciNet  Google Scholar 

  • Inoue, M., F. Kajiva, H. Inada, A. Kitabatake, M. Hori, S. Fukui and H. Abe. 1976. “Optimal Control of Medical Treatment: Adaptive Control of Blood Glucose Level in Diabetic Coma.”Comput. Biomed. Res. 9, 217–228.

    Article  Google Scholar 

  • Keener, J. P. 1981. “On Cardiac Arrhythmias: AV Conduction Block.J. math. Biol. 12, 215–225.

    MATH  MathSciNet  Google Scholar 

  • Kholodenko, B. N., Kh. V. Geviksman and L. Ye. Kholodov. 1982. “Optimal Tactics of Antibacterial Therapy for the Trigger Model of the Infectious Process.”Biophysics 27, 945–950. (English translation ofBiofizika 27, 900–905).

    Google Scholar 

  • King, R., J. D. Barchas and B. Huberman. 1983. “Theoretical Psychopathology: An Application of Dynamical Systems Theory to Human Behavior.” In: E. Basar, H. Flohr, H. Haken and A. J. Mandell (Eds)Synergetics of the Brain, pp. 352–364. Berlin: Springer Verlag.

    Google Scholar 

  • —— and —. 1984. “Chaotic Behavior in Dopamine Neurodynamics.”Proc. natn. Acad. Sci. U.S.A. 81, 1244–1247.

    Article  Google Scholar 

  • Koivo, A. J. 1980. “Automatic Continuous-time Blood Pressure Control in Dogs by Means of Hypertensive Drug Injection.”IEEE Trans. Biomed. Eng. BME27, 574–581.

    Google Scholar 

  • Kolmogorov, A. N. 1958. “A Metric Invariant of Transient Dynamical Systems and Automorphisms in Lebesgue Spaces.”Dokl. Acad. Nauk USSR. 119, 861–864. (English summary:Math. Rev. 21, 386).

    MATH  MathSciNet  Google Scholar 

  • Labouriau, I. S. 1985. “Degenerate Hopf Bifurcation and Nerve Impulse.”SIAM J. appl. Maths. 16, 1121–1133.

    Article  MATH  MathSciNet  Google Scholar 

  • Lefschetz, S. 1965.Stability of Nonlinear Control Systems. New York: Academic Press.

    MATH  Google Scholar 

  • Luggen, W. W. 1984.Fundamentals of Numerical Control. New York: Delmar.

    Google Scholar 

  • Mackey, M. C. 1979a. “Periodic Autoimmune Hemolytic Anemia: An Induced Dynamical Disease.”Bull. math. Biol. 41, 829–834.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1979b. “Dynamic Hematological Disorders of Stem Cell Origin.” In: J. G. Vassileva-Popova and E. V. Jensen (Eds)Biophysical and Biochemical Information Transfer in Recognition, pp. 373–409. New York: Plenum Publishing.

    Google Scholar 

  • — 1981a. “Some Models in Hemopoiesis: Predictions and Problems”. In: M. Rotenberg (Ed.)Biomathematics and Cell Kinetics, pp. 23–38. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • — 1981b. “Unravelling the Connection between Human Hematopoietic Cell Proliferation and Maturation.” In: E. V. Jensen and J. G. Vassileva-Popova (Eds)Regulation of Reproduction and Aging. New York: Plenum Press.

    Google Scholar 

  • — and U. an der Heiden. 1982. “Dynamical Diseases and Bifurcations: Understanding Functional Disorders in Physiological Systems.Funkt. Biol. Med. 1, 156–164.

    Google Scholar 

  • — and L. Glass. 1977. “Oscillation and Chaos in Physiological Control Systems.”Science, Wash. 197, 287–289.

    Google Scholar 

  • Mandelbrot, B. B. 1983.The Fractal Geometry of Nature.Revised Edition. San Francisco: W. H. Freeman.

    Google Scholar 

  • Marsden, J. and M. McCracken. 1976.The Hopf Bifurcation Theorem and Its Applications. Lectures in Applied Mathematics. Berlin: Springer-Verlag.

    Google Scholar 

  • Martiel, J.-L. and A. Goldbeter. 1985. “Autonomous Chaotic Behaviour of the Slime MouldDictyostelium discoideum Predicted by a Model for Cyclic AMP Signalling.”Nature, Lond. 313, 590–592.

    Article  Google Scholar 

  • Martiel, J.-L. and A. Goldbeter. 1987. “A Model Based on Receptor Desensitization for Cyclic AMP Signalling inDictyostelium Cells.” (Submitted toBiophys. J.)

  • Mees, A. I. 1981.Dynamics of Feedback Systems. Chichester: John Wiley.

    MATH  Google Scholar 

  • — and P. E. Rapp. 1978. “Periodic Metabolic Systems: Oscillations in Multiple-loop Negative Feedback Biochemical Control Networks.”J. math. Biol. 5, 99–114.

    Google Scholar 

  • — and C. T. Sparrow. 1981. “Chaos”. IEE Proc.128D, 201–205.

    Google Scholar 

  • Modanlon, H. D. and R. K. Freeman. 1982. “Sinusoidal Fetal Heart Rate Pattern: Its Definition and Clinical Significance.”Am. J. Obsts. Gynecol. 142, 1033–1038.

    Google Scholar 

  • Morley, A. 1970. “Periodic Diseases, Physiological Rhythms and Feedback Control—a Hypothesis.”Aust. Ann. Med. 3, 244–249.

    Google Scholar 

  • Mylander, W. C., R. L. Holmes and G. P. McCormick. 1973. “Code for the Fiacco and McCormick Algorithm.” In: J. L. Kuester and J. H. Mize (Eds)Optimization Techniques with Fortran, pp. 412–463. New York: McGraw-Hill.

    Google Scholar 

  • —— and —. 1974. “A Guide to SUMT Version 4.” RAC-63 Research Analysis Corporation, McLean, VA (now General Research Corporation, McLean, VA).

    Google Scholar 

  • Nemytskii, H. and V. V. Stepanov. 1960.Qualitative Theory of Differential Equations. Princeton, New Jersey: Princeton University Press.

    MATH  Google Scholar 

  • Oseledec, V. I. 1968. “A Multiplicative Ergodic Theorem. Lyapunov Characteristic Numbers for Dynamical Systems.”Trans. Moscow math. Soc. 19, 197–231.

    MATH  MathSciNet  Google Scholar 

  • Packard, N. H., J. P. Crutchfield, F. D. Farmer and R. S. Shaw. 1980. “Geometry From a Time Series.”Phys. Rev. Lett. 45, 712–716.

    Article  Google Scholar 

  • Parks, P. C. 1963. “A New Proof of the Hurwitz Stability Criterion by the Second Method of Lyapunov with Applications to “Optimum” Transfer Functions.”Proceedings Joint Auto. Control Conf. A.I.Ch.E., Minn.

  • Pesin, Y. B. 1977. “Characteristic Lyapunov Exponents and Smooth Ergodic Theory.”Russ. math. Surveys. 32, 55–114.

    Article  MATH  MathSciNet  Google Scholar 

  • Poore, A. B. 1976. “On the theory and application of the Hopf-Friedrichs bifurcation theory”.Arch. ratn. Mech. An. 60, 371–393.

    MATH  MathSciNet  Google Scholar 

  • Rapp, P. E. 1975. “A theoretical investigation of a large class of biochemical oscillators.”Math. Biosci. 25, 165–188.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1986. “Oscillations and Chaos in Cellular Metabolism and Physiological Systems.” In: A. V. Holden (Ed.)Choas, An Introduction, pp. 179–208. Manchester: Manchester University Press.

    Google Scholar 

  • — 1987. “Why are so Many Biological Systems Periodic?”Prog. Neurobiol. 29, 261–273.

    Article  Google Scholar 

  • Renyi, A. 1959. “On the Dimension and Entropy of Probability Distributions.”Acta Math. Acad. Sci. Hungar. 10, 193–215. (English translation: “Selected Papers of A. Renyi”.2, 320–342,Akademiai, Budapest).

    Article  MATH  MathSciNet  Google Scholar 

  • Richardson, J. A. and J. L. Kuester. 1973a. “Complex Method for Constrained Optimization.”Commun. ACM. 16, 487.

    Article  Google Scholar 

  • — and —. 1973b. “The Complex Method for Constrained Optimization.” Collected Algorithms from ACM. Algorithm 454. New York: Association for Computing Machinery.

    Google Scholar 

  • Ritzenburg, A. L., D. R. Adam and R. J. Cohen. 1984. “Period Multiplying-Evidence for Nonlinear Behaviour of the Canine Heart.”Nature, Lond. 307, 159–161.

    Article  Google Scholar 

  • Rosenbrock, H. H. 1960. “An Automatic Method for Finding the Greatest or Least Value of a Function.”Computer J. 3, 175–184.

    Article  MathSciNet  Google Scholar 

  • — and C. Storey. 1966.Computational Techniques for Chemical Engineers. New York: Pergamon.

    Google Scholar 

  • Routh, E. J. 1877.A Treatise on the Stability of a Given State of Motion. London: MacMillan.

    Google Scholar 

  • Sell, G. 1966. “Periodic solutions and asymptotic stability.”J. diff. Eqns. 2, 143–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Shaw, R. 1981. “Strange Attractors, Chaotic Behavior and Information Flow.”Z. Naturforsch. 36A, 80–112.

    Google Scholar 

  • Shimada, I. and T. Nagashima. 1979. “A numerical approach to ergodic problem of dissipative systems.”Prog. theor. Phys. 61, 1605–1616.

    Article  MATH  MathSciNet  Google Scholar 

  • Simpson, H. W., L. Gjessing, J. Kuhl and R. Halberg. 1974. “Phase Analysis of the Somatic and Mental Variables in Gjessing's Case 2484 of Intermittent Catatonia.” In: L. E. Schevinget al. (Eds)Chronobiology, pp. 535–539. Tokyo: Igaku Shoin.

    Google Scholar 

  • Smith, J. M. and R. J. Cohen. 1984. “Simple Finite-element Model Accounts for a Wide Range of Cardiac Dysrhythmias.”Proc. natn. Acad. Sci. U.S.A. 81, 233–237.

    Article  Google Scholar 

  • Swan, G. W. 1981.Optimization of Human Cancer Radiotherapy.Lectures in Biomathematics. Vol. 42. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • — 1982. “An Optimal Control Model of Diabetes Mellitus.”Bull. math. Biol. 44, 793–808.

    Article  MATH  MathSciNet  Google Scholar 

  • — 1984.Applictions of Optimal Control Theory in Biomedicine. New York: Marcel Dekker.

    Google Scholar 

  • — 1985. “Optimal Control Applications in the Chemotherapy of Multiple Myeloma.”IMA J. Maths. appl. Med. Biol. 2, 139–160.

    MATH  MathSciNet  Google Scholar 

  • — 1986. “Optimal Control in Chemotherapy.”Biomed. Meas. Inform. Contr. 1, 3–15.

    Google Scholar 

  • — and T. L. Vincent. 1977. “Optimal Control Analysis in the Chemotherapy of IgG Multiple Myeloma.”Bull. math. Biol. 39, 317–337.

    Article  MATH  Google Scholar 

  • Takens, F. 1980. “Detecting Strange Attractors in Turbulence.” In: D. R. Rand and L. S. Young (Eds)Dynamical Systems and Turbulence.Lecture Notes in Mathematics.Vol. 898, pp. 315–381. New York: Springer-Verlag.

    Google Scholar 

  • Teo, K. L. and L. T. Yeo. 1979. “On the Computational Methods of Optimal Control Problems.”Int. J. Syst. Sci. 10, 51–76.

    MATH  MathSciNet  Google Scholar 

  • Troy, W. C. 1976. “Bifurcation Phenomena in Fitzhugh's Nerve Conduction Equations.”J. math. Anal. Appl. 54, 678–690.

    Article  MATH  MathSciNet  Google Scholar 

  • Walter, C. F. 1970. “The Occurrence and Significance of Limit Cycle Behavior in Controlled Biochemical Systems.”J. theor. Biol. 27, 259–272.

    Article  Google Scholar 

  • West, B. J., A. L. Goldberger, G. Rovner and V. Bhargava. 1985. “Nonlinear Dynamics of the Hearbeat—I. The AV Junction: Passive Conduit or Active Oscillator?”Physica 17D, 198–206.

    MathSciNet  Google Scholar 

  • Wolf, A., J. Swift, H. L. Swinney and J. A. Vastano. 1985. “Determining Lyapunov Exponents from a Time Series.”Physica 16D, 285–317.

    MathSciNet  Google Scholar 

  • Woodcock, A. and Davis, M. 1978.Catastrophe Theory. New York: Avon.

    MATH  Google Scholar 

  • Wyatt, S. P. 1964.Principles of Astronomy. Boston: Allkyn and Bacon.

    Google Scholar 

  • Yancey, C. B. and R. C. Spear. 1973. “Code for the Constrained Rosenbrock Algoriothm.” In: J. L. Kuester and J. H. Mize (Eds)Optimization Techniques in Fortran, pp. 386–398. New York: McGraw-Hill.

    Google Scholar 

  • Zeeman, E. C. 1976a. “Catastrophe Theory.”Sci. Am. 234 (4), 65–83.

    Article  Google Scholar 

  • — 1976b. “Duffing's Equation in Brain Modelling.”Bull. Inst. Maths. Applics. 12, 207–214.

    MathSciNet  Google Scholar 

  • Zubov, V. I. 1962.Mathematical Methods for the Study of Automatic Control Systems. Oxford: Pergamon Press.

    MATH  Google Scholar 

  • — 1964.Methods of A. M. Lyapunov and their Application. (Translated by L. F. Boron). Groningen: P. Noordhoff.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, P.E., Latta, R.A. & Mees, A.I. Parameter-dependent transitions and the optimal control of dynamical diseases. Bltn Mathcal Biology 50, 227–253 (1988). https://doi.org/10.1007/BF02458882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458882

Keywords

Navigation