Skip to main content
Log in

A community model of ciliateTetrahymena and bacteriaE. coli: Part I. Individual-based models ofTetrahymena andE. coli populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The dynamics of a microbial community consisting of a eucaryotic ciliateTetrahymena pyriformis and procaryoticEscherichia coli in a batch culture is explored by employing an individual-based approach. In this portion of the article, Part I, population models are presented. Because both models are individual-based, models of individual organisms are developed prior to construction of the population models. The individual models use an energy budget method in which growth depends on energy gain from feeding and energy sinks such as maintenance and reproduction. These models are not limited by simplifying assumptions about constant yield, constant energy sinks and Monod growth kinetics as are traditional models of microbal organisms. Population models are generated from individual models by creating distinct individual types and assigning to each type the number of real individuals they represent. A population is a compilation of individual types that vary in a phase of cell cycle and physiological parameters such as filtering rate for ciliates and maximum anabolic rate for bacteria. An advantage of the developed models is that they realistically describe the growth of the individual cells feeding on resource which varies in density and composition. Part II, the core of the project, integrates models into a dynamic microbial community and provides model analysis based upon available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Auslander, D. M., G. F. Oster and C. B. Huffaker. 1977. Dynamics of interacting populations.J. Franklin Inst. 297, 345–374.

    Article  Google Scholar 

  • Chapman-Andersen, C. and J. R. Nilsson. 1968. On vacuole formation inTetrahymena pyriformis GL.Carlsberg Res. Commun. 405–432.

  • Curds, C. R. and A. Cockburn. 1968. Studies on the growth and feeding ofTetrahymena pyriformis in axenic and monoxenic culture.J. Gen. Microbiol. 54, 343–358.

    Google Scholar 

  • Dawes, E. A. 1976. Endogenous metabolism and the survival of the starved procaryotes. InThe Survival of Vegetative Microbes T. R. Gray and J. R. Postgate (Eds) pp. 19–53. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • DeAngelis, D. L., K. A. Rose, L. B. Crowder and E. A. Marshall. 1993. Fish cohort dynamics: Application of complementary modeling approaches.Am. Naturalist 142, 604–622.

    Article  Google Scholar 

  • Domach, M. M., S. K. Leung, R. E. Cahn, G. G. Cocks and M. L. Shuler. 1984. Computer model for glucose-limited growth of a single cell ofEscherichia coli B/r-A.Biotech. Bioeng. 26, 203–216.

    Article  Google Scholar 

  • Donachie, W. D. 1968. Relationship between cell size and time of initiation of DNA replication.Nature 219, 1077–1079.

    Article  Google Scholar 

  • Droop, M. R. 1973. Some thoughts on nutrient limitation in algae.J. Phycol. 9, 264–272.

    Article  Google Scholar 

  • Elliot, A. M. 1973.Biology of Tetrahymena. Stroudsburg, PA: Dowden, Hutchinson and Ross Inc.

    Google Scholar 

  • Fenchel, T. 1980a. Suspension feeding in ciiiated protozoa: functional response and particle size.Microb. Ecol. 6, 1–11.

    Article  Google Scholar 

  • Fenchel, T. 1980b. Suspension feeding in ciliated protozoa: feeding rates and their ecological significance.Microb. Ecol. 6, 13–25.

    Article  Google Scholar 

  • Fredrickson, A. G. 1991. Segregated, structured, distributed models and their role in microbial ecology: a case study based on work done on the filter feeding ciliateTetrahymena pyriformis.Microb. Ecol. 22, 139–159.

    Google Scholar 

  • Fredrickson, A. G., D. Ramkrishna and H. M. Tsuchiya. 1967. Statistics and dynamics of procaryotic cell populations.Math. Biosci. 1, 327–374.

    Article  MATH  Google Scholar 

  • Hallam, T. G., R. R. Lassiter, J. Li and L. A. Suarez. 1990. Modelling individuals employing an integrated energy response: application toDaphnia.Ecology 71, 938–954.

    Article  Google Scholar 

  • Hamburger, K. and E. Zeuthen. 1957. Synchronous divisions inTetrahymena pyriformis as studied in an inorganic medium.Exp. Cell Res. 13, 443–453.

    Article  Google Scholar 

  • Hatzis, C., P. J. Sweeney, F. Srienc and A. G. Fredrickson. 1990. A discrete, stochastic model for microbial filter feeding: model for feeding ciliated protists on spatially uniform, nondepletable suspensions.Math. Biosci. 102, 127–181.

    Article  MATH  Google Scholar 

  • Hatzis, C., F. Srienc and A. G. Fredrickson. 1994. Feeding heterogeneity in ciliate populations: effects of culture age and nutritional state.Biotech. Bioeng. 43, 371–380.

    Article  Google Scholar 

  • Hellung-Larsen, P. and A. P. Andersen. 1989. Cell volume and dry weight of culturedTetrahymena.J. Cell. Sci. 92, 319–324.

    Google Scholar 

  • Hellung-Larsen, P., I. Lyhne, A. P. Andersen and U. Koppelhus. 1993. Characteristics of dividing and non-dividingTetrahymena cells at different physiological states.Eur. J. Protistol. 29, 182–190.

    Google Scholar 

  • Jaworska, J. S. 1993. Ecology and toxicology ofTetrahymena pyriformis-E. coli microbial community—a modeling study. Ph.D. dissertation, University of Tennessee, Knoxville.

    Google Scholar 

  • Jauker F., S. Lades and T. Nowack. 1986. The energy budget ofTetrahymena and the material fluxes into and out of the adenylate pool.Exp. Cell Res. 166, 161–170.

    Article  Google Scholar 

  • Joshi, A. and B. O. Palsson. 1988.Escherichia coli growth dynamics: A three-pool biochemically based description.Biotech. Bioeng. 31, 102–116.

    Article  Google Scholar 

  • Koch, A. L. 1970. Overall controls on the biosynthesis of ribosomes in growing bacteria.J. Theor. Biol. 28, 203–231.

    Article  Google Scholar 

  • Kooi, B. W. and S. A. L. M. Kooijman. 1994a. Existence and stability of microbial prey-predator systems.170, 75–85.

    Google Scholar 

  • Kooi, B. W. and S. A. L. M. Kooijman. 1994b. Transient behavior of food chains in chemostats,J. Theor. Biol. 170, 87–94.

    Article  Google Scholar 

  • Kooijman, S. A. L. M. 1993.Dynamic Energy Budgets in Biological Systems; Theory and Applications in Ecotoxicology. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Lavin, D. P., C. Hatzis, F. Srienc and A. G. Fredrickson. 1990. Size effects on the uptake of particles by populations ofTetrahymena pyriformis cells.J. Protozool. 37, 157–163.

    Google Scholar 

  • Metz, J. A. J. and O. Diekmann. 1986. The dynamics of physiologically structured populations.Lecture Notes in Biomathematics. vol. 68. Berlin: Springer.

    MATH  Google Scholar 

  • Monod, J. 1942.Recherches sur la Croissance Bactériennes. Paris: Hermann.

    Google Scholar 

  • Neidhardt, F. C. (Ed.) 1987.Escherichia coli and Salmonella typhimurium; Cellular and Molecular Biology. Washington, DC: Am. Soc. Microbiol.

    Google Scholar 

  • Nilsson, J. R. 1987. Structural aspects of digestion ofEscherichia coli inTetrahymena.J. Protozool. 34, 1–6.

    Google Scholar 

  • Paynter, R. A. Jr. (Ed). 1974.Avian Energetics. Cambridge, MA: Nutall Ornithological Club.

    Google Scholar 

  • Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures.Proc. Roy. Soc. London. Ser. B 163, 224–231.

    Article  Google Scholar 

  • Ryley, J. F. 1952. Studies on the metabolism of the protozoa, 3. Metabolism of the ciliateTetrahymena pyriformis (Glaucoma pyriformis).Biochemistry 52, 483–492.

    Google Scholar 

  • Sambanis, A. 1985. Experimental and modeling studies on the dynamics of cultures of the ciliateTetrahymena pyriformis grown on several bacterial species. Ph.D. dissertation, University of Minnesota.

  • Schulze, K. L. and R. S. Lipe. 1964. Relationship between substrate concentration, growth rate and respiration rate ofEscherichia coli in continuous culture.Arch. Microbiol. 48, 1–20.

    Google Scholar 

  • Sinko, J. W. and W. Striefer. 1971. A model for populations reproducing by fission.Ecology 52, 330–335.

    Article  Google Scholar 

  • Swift, S. T. 1981. Some aspects of the autoecology of the ciliated protozoan,Tetrahymena pyriformis. Ph.D. dissertation, University of Minnesota.

  • Watson, P. J., K. Ohtaguchi and A. G. Fredrickson. 1981. Kinetics of growth of the ciliateTetrahymena pyriformis on Escherichia coli.J. Gen. Microb. 122, 323–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaworska, J.S., Hallam, T.G. & Schultz, T.W. A community model of ciliateTetrahymena and bacteriaE. coli: Part I. Individual-based models ofTetrahymena andE. coli populations. Bltn Mathcal Biology 58, 247–264 (1996). https://doi.org/10.1007/BF02458308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458308

Keywords

Navigation