Skip to main content
Log in

Kinetics of an autocatalytic zymogen reaction in the presence of an inhibitor coupled to a monitoring reaction

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A global kinetic analysis of a model consisting of an autocatalytic zymogen-activation process, in which an irreversible inhibitor competes with the zymogen for the active site of the proteinase, and a monitoring coupled reaction, in which the enzyme acts upon one of its substrates, is presented. This analysis is based on the progress curves of any of the two products released in the monitoring reaction. The general solution is applied to an important particular case in which rapid equilibrium conditions prevail. Finally, we suggest a procedure to predict whether the inhibition or activation route dominates in the steady state of the system. These results generalize our previous analysis of simpler mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Baici, A., 1990. Interaction of human leukocyte elastase with soluble and insoluble protein substrates.Biochim. Biophys. Acta 1040, 355–364.

    Google Scholar 

  • Barrett, A. J. and G. Salveson. 1986.Proteinase Inhibitors, pp. 661–670. Amsterdam: Elsevier.

    Google Scholar 

  • Bergum, P. W. and S. J. Gardell. 1992. Vampire bat salivary plasminogen activator exhibits a strict and fastidious requirement for polymeric fibrin as its cofactor, unlike human tissue-type plasminogen activator.J. Biol. Chem. 276, 17726–17731.

    Google Scholar 

  • Cohen, P. 1976.Control of Enzyme Activity, pp. 20–23. New York: Wiley.

    Google Scholar 

  • Colomb, E. and C. Figarella. 1979. Comparative studies on the mechanism of activation of the two human trypsinogens.Biochim. Biophys. Acta 571, 343–351.

    Google Scholar 

  • Davie, E. W. and K. Fujikawa. 1975. Basic mechanisms in blood coagulation.Ann. Rev. Biochem. 44, 798–829.

    Google Scholar 

  • Delaage, M., P. Desnuelle, M. Lazdunski, E. Bricas and J. Savrda 1967. On the activation of trypsinogen. A study of peptide models related to theN-terminal sequence of the zymogen.Biochem. Biophys. Res. Commun. 29, 235–240.

    Article  Google Scholar 

  • Dixon, M., E. C. Webb, C. J. R. Thorne and K. F. Tipton. 1979.Enzymes, 3rd. ed., pp. 300–307. London: Longman.

    Google Scholar 

  • Ellis, V. and K. Dano. 1992. The urokinase receptor and the regulation of cell surface plasminogen activation.Fibrinolysis 6, 27–34.

    Google Scholar 

  • Fredenburgh, J. C. and M. E. Nesheim. 1992. Lys-plasminogen is a significant intermediate in the activation of Glu-plasminogen during fibrinolysis in vitro.J. Biol. Chem. 267, 26150–26156.

    Google Scholar 

  • Galindo, J. D., R. Peñafiel, R. Varón, E. Pedreño, F. García-Carmona and F. García-Cánovas. 1983. Kinetic study of the activation process of frog epidermis protyrosinase by trypsin.Int. J. Biochem. 15, 633–637.

    Article  Google Scholar 

  • García-Moreno, M. B., H. Havsteen, R. Varón and H. Rix-Matzen. 1991. Evaluation of the kinetic parameters of the activation of trypsinogen by trypsin.Biochim. Biophys. Acta 1980, 143–147.

    Google Scholar 

  • Garrido del Solo, C., R. Varón and F. García-Cánovas. 1992. Programa de ordenador para simular el comportamiento cinético de las reacciones enzimáticas.An. Quim. 88, 633–639.

    Google Scholar 

  • Geppert, A. G. and B. R. Binder. 1992 Allosteric regulation of tPA-mediated plasminogen activation by a modifier mechanism: evidence for a binding site for plasminogen on the tPA A-chain.Arch. Biochem. Biophys. 297, 205–212.

    Article  Google Scholar 

  • Gerads, I., G. Tans, L. Y. Yukelson, R. F. A. Zwaal and J. Rosing. 1992. Activation of bovine factor V by an activator purified from the venom of Naja Naja Oxiana.Toxicon 30, 1065–1079.

    Article  Google Scholar 

  • Gerald, C. F. and P. Wheatley. 1989.Applied Numerical Analysis, 4th ed., pp. 367–399. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Gray, P. and R. G. Duggleby. 1989. Analysis of kinetic data for irreversible enzyme inhibition.Biochem. J. 257, 419–424.

    Google Scholar 

  • Greenberger, N. J., P. P. Toskes and K. J. Isselbacher. 1989.Harrison's Principles of Internal Medicine, 11th ed. E. Braunwald, K. J. Isselbacher, R. G. Peterdorf, J. D. Wilson, J. B. Martin and A. S. Fauci (Eds), Vol. II, pp. 1675–1689. New York: McGraw-Hill.

    Google Scholar 

  • Hadorn, B. 1974. Pancreatic proteinases.Med. Clin. North. Am. 58, 1319–1331.

    Google Scholar 

  • Hatfield, L. M., S. K. Banerjee and A. Light. 1971. Activation of selectively reduced and alkylated trypsinogen and enzyme properties of the activated product.J. Biol. Chem. 246, 6303–6312.

    Google Scholar 

  • Havsteen, B. and R. Varón. 1990. Kinetics of the classical complement activation cascade.J. Theor. Biol. 145, 47–64.

    Article  Google Scholar 

  • Holzer, H. and P. C. Heinrich. 1980. Control of proteolysis.Ann. Rev. Biochem. 49, 63–91.

    Article  Google Scholar 

  • Karlson, P., 1988.Biochemie, 13th ed., pp. 160 and 161. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Leytus, S. P., D. L. Toledo and W. I. Mangel. 1984. Theory and experimental method for determining individual kinetic constants of fast-acting, irreversible proteinase inhibitors.Biochim. Biophys. Acta 788, 74–86.

    Google Scholar 

  • Liu, W. and C. L. Tsou. 1986. Determination of rate constants for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of the inhibitor.Biochim. Biophys. Acta 870, 185–190.

    Google Scholar 

  • Löffler, G. and P. E. Petrides. 1988.Physiologische Chemie, pp. 832–843. Berlin: Springer.

    Google Scholar 

  • Lorand, L. and J. T. Radek. 1992. Activation of human plasma factor XIII by thrombin.Thrombin: Structure and Function 7, 257–271.

    Google Scholar 

  • Manjabacas, M. C., E. Valero, M. García-Moreno, F. García-Cánovas, J. N. Rodríguez and R. Varón. 1992. Kinetic analysis of the control through inhibition of autocatalytic zymogen activation.Biochem. J. 282, 583–587.

    Google Scholar 

  • Mann, K. G., R. J. Jenny and S. Krishnaswamy. 1988. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes.Ann. Rev. Biochem. 57, 915–956.

    Article  Google Scholar 

  • Mihalyi, E. 1972.Application of Proteolytic Enzymes to Protein Structure Studies. Cleveland: CRC Press.

    Google Scholar 

  • Müller-Eberhard, H. J. 1988. Molecular organization and function of the complement system.Ann. Rev. Biochem. 57, 321–347.

    Article  Google Scholar 

  • Neurath, H. and K. A. Walsh. 1976.Proteolysis and Physiological Regulation, E. W. Ribbous and K. Brew (eds), pp. 29–40, New York: Academic Press.

    Google Scholar 

  • Rappay, G., 1989.Proteinases and Their Inhibitors in Cells and Tissues, pp. 1–61. Stuttgart: Gustav Fischer.

    Google Scholar 

  • Rhodes, C. J., A. Zumbrunn, E. M. Bailyes, E. Shaw and J. C. Hutton. 1989. The inhibition of proinsuline-processing endopeptidase activities by active-site-directed peptides.Biochem. J. 258, 305–308.

    Google Scholar 

  • Ruf, W., D. J. Miles, A. Rehemtulla and T. S. Edgington. 1992. Tissue factor residues 157–167 are required for efficient proteolytic activation of factor X and factor VII.J. Biol. Chem. 267, 22206–22210.

    Google Scholar 

  • Rugg, T. and P. Feldman. 1987.Turbo Pascal, Biblioteca de Programas, pp. 429–433. Madrid: Anaya.

    Google Scholar 

  • Scharpe, S., I. De Meester, D. Hendriks, G. Vanhoof, M. van Sande and G. Vriend. 1991. Proteases and their inhibitors: today and tomorrow.Biochemie 73, 121–126.

    Article  Google Scholar 

  • Segel, L. A. 1988. On the validity of the steady state assumption of enzyme kinetics.Bull. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Tans, G., J. Rosing, M. Berrettini, B. Lammle and J. H. Griffin. 1987. Autoactivation of human plasma prekallikrein.J. Biol. Chem. 262, 11308–11314.

    Google Scholar 

  • Trimarchi, A., D. Minestrini, G. Palazzeri and M. Cassetti. 1992. The effects of lipoproteins on the tissue factor-dependent activation of factor X.Int. J. Clin. Lab. Res. 22, 115–118.

    Google Scholar 

  • Varón, R., F. García-Cánovas, F. García-Carmona, J. Tudela, M. García, A. Vázquez and E. Valero. 1987. Kinetics of a general model for enzyme activation through a limited proteolysis.Math. Biosci. 87, 31–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Varón, R., B. H. Havsteen, A. Vázquez, M. García, E. Valero and F. García-Cánovas. 1990. Kinetics of the trypsinogen activation by enterokinase and trypsin.J. Theor. Biol. 145, 123–131.

    Article  Google Scholar 

  • Varón, R., B. H. Havsteen, M. García, A. Vázquez, J. Tudela and F. García-Cánovas. 1991. Kinetics of the trypsinogen activation by enterokinase and/or trypsin: coupling of a reaction in which the trypsin acts on one of its substrates.J. Mol. Catal. 66, 409–419.

    Article  Google Scholar 

  • Varón, R., B. H. Havsteen, M. García and A. Vázquez. 1992. Kinetics of a model of autocatalysis. Coupling of a reaction in which the enzyme acts on one of its substrates.J. Theor. Biol. 154, 261–270.

    Google Scholar 

  • Varón, R., A. Román, F. García-Cánovas and F. García-Carmona. 1986. Transient phase kinetics of activation of human plasminogen.Bull. Math. Biol. 48, 149–166.

    Article  MATH  Google Scholar 

  • Vázquez, A., R. Varón, J. Tudela and F. García-Cánovas. 1993. Kinetic characterization of a model for zymogen activation: an experimental design and kinetic data analysis.J. Mol. Catal. 79, 347–363.

    Article  Google Scholar 

  • Vendrell, J., A. Guasch, M. Coll, V. Villegas, M. Billeter, G. Wider, R. Huber, K. Wüthrich and F. X. Avilés. 1992. Pancreatic procarboxipeptidases: Their activation processes related to the structural features of the zymogens and activation segments.Biol. Chem. Hoppe-Seyler 373, 387–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjabacas, M.C., Valero, E., García-Moreno, M. et al. Kinetics of an autocatalytic zymogen reaction in the presence of an inhibitor coupled to a monitoring reaction. Bltn Mathcal Biology 58, 19–41 (1996). https://doi.org/10.1007/BF02458280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458280

Keywords

Navigation