Skip to main content
Log in

Unidirectional waves on rings: Models for chiral preference of circumnutating plants

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Twining plants exhibit a striking oscillation of their stems in their quest for a support. The oscillations, called circumnutation, have periods generally of 1–5 hr, and virtually all species have a preferred direction of twining. I seek to explain these chiral asymmetries in plant behavior by hypothesizing a chiral asymmetry in plant anatomy. Such asymmetries already exist, for example, in phyllotaxis. I explore wave phenomena on asymmetric but isotropic rings, and seek systems which will only support (stable) waves in one direction around the ring, and not in the other. Simulations indicate that (1) oscillatory reaction-diffusion systems do not support unidirectional waves on rings; (2) excitable reaction-diffusion systems do support unidirectional waves on rings; and (3) unidirectional phase-locking (discrete unidirectional waves) occurs in rings of coupled oscillators. Thus, chiral asymmetries of circumnutating plants cannot be explained by continuum oscillator phenomena, but can be explained by general discrete oscillators, or excitable phenomena on the continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andersen, H. 1976. A mathematical model for circumnutations. Technical Report 2/1976, Lund Institute of Technology, Lund, Sweden.

    Google Scholar 

  • Badot, P.-M. 1987. Approche cellulaire du mécanisme du mouvement révolutif des tiges volubiles. Étude de quelques paramètres physico-chimiques.Annales Scientifiques de l'Université de Besançon, Géologie, 4ème ser.,8(50), 53–110.

    Google Scholar 

  • Badot, P.-M., B. Bonnet and B. Millet. 1990a. Implication possible de canaux potassiques dans le mécanisme du mouvement révolutif des tiges volubiles.C. r. Acad. Sci. Paris 311, sér. III, 445–451.

    Google Scholar 

  • Badot, P.-M., D. Melin and J.-P. Garrec. 1990b. Circumnutation inPhaseolus vulgaris. II. Potassium content in the free-moving part of the shoot.Plant Physiol. Biochem. 28, 123–128.

    Google Scholar 

  • Brown, A. 1991. Gravity perception and circumnutation in plants. InAdvances in Space Biology and Medicine, S. L. Bontinget al. (Eds), Vol. 1, pp. 129–153. Greenwich, CT: JAI Press.

    Google Scholar 

  • Brown, A. H. and D. K. Chapman. 1977. Effects of increased gravity force on nutation of sunflower hypocotyls.Plant Physiol. 59, 636–640.

    Google Scholar 

  • Brown, A. and D. Chapman. 1984. Circumnutation observed without a significant gravitational force in spaceflight.Science 225, 230–232.

    Google Scholar 

  • Brown, A., D. Chapman, R. Lewis and A. Venditti. 1990. Circumnutation of sunflower hypocotyls in satellite orbit.Plant Physiol. 94, 233–238.

    Article  Google Scholar 

  • Darwin, C. 1865. On the movements and habits of climbing plants.J. Linn. Soc. Bot. 9, 1–118.

    Google Scholar 

  • Darwin C. 1876.The Movements and Habits of Climbing Plants. New York: D. Appleton.

    Google Scholar 

  • Darwin, C. and F. Darwin. 1880.The Power of Movement in Plants. London: John Murray.

    Google Scholar 

  • Doedel, E. 1986.AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations.

  • Ermentrout, G. 1992a. Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators.SIAM J. appl. Math. 52(6), 1665–1687.

    Article  MATH  MathSciNet  Google Scholar 

  • Ermentrout, G. B. 1992b.xtc software package.

  • Ermentrout, G. and N. Kopell. 1991. Multiple pulse interactions and averaging in systems of coupled neural oscillators.J. math. Biol. 29, 195–217.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldsworthy, A. 1983. The evolution of plant action potentials.J. theor. Biol. 103, 645–648.

    Article  Google Scholar 

  • Hyver, C., D. Melin and B. Millet. 1982. Mouvements révolutifs: une interpretation physicochimique? InLes Mécanismes de l'Irritabilité et du Fonctionnement des Rythmes chez les Végétaux, H. Greppin and E. Wagner (Eds), pp. 20–34. Colloque de Cartigny.

  • Johnsson, A. and D. Heathcote. 1973. Experimental evidence and models on circumnutations.Z. Pflanzenphysiol. Bd. 70, 371–405.

    Google Scholar 

  • Kopell, N. and L. N. Howard. 1973. Plane wave solutions to reaction-diffusion equations.Stud. appl. Math. LII(4), 291–328.

    MathSciNet  Google Scholar 

  • Lubkin, S. 1992. Circumnutation modeled by reaction-diffusion equations. Ph.D. thesis, Cornell University.

  • Lubkin, S. and R. Rand. 1994. Oscillatory reaction-diffusion equations on rings.J. math. Biol. (in press).

  • Millet, B., D. Melin, B. Bonnet, C. A. Ibrahim and J. Mercier. 1984. Rhythmic circumnutation movement of the shoots inPhaseolus vulgaris 1.Chronobiol. Int. 1, 11–19.

    Google Scholar 

  • Millet, B., D. Melin and P.-M. Badot. 1988. Circumnutation inPhaseolus vulgaris. I. Growth, osmotic potential and cell ultrastructure in the free-moving part of the shoot.Physiol. Plant. 72, 133–138.

    Article  Google Scholar 

  • Mohl, H. 1827.Uber den Bau und das Winden der Ranken und Schlingpflanzen. Tübingen.

  • Niklas, K. 1992.Plant Biomechanics: An Engineering Approach to Plant Form and Function. Chicago: University of Chicago Press.

    Google Scholar 

  • Palm, L. H. 1827.Uber das Winden der Pflanzen. Stuttgart.

  • Pauwelussen, J. P. 1981. Nerve impulse propagation in a branching nerve system: a simple model.Physica D 4, 67–88.

    Article  MathSciNet  Google Scholar 

  • Pauwelussen, J. P. 1982. One way traffic of pulses in a neuron.J. math. Biol. 15, 151–171.

    Article  MATH  MathSciNet  Google Scholar 

  • Rinzel, J. 1981. Models in neurobiology. InNonlinear Phenomena in Physics and Biology, R. H. Ennset al. (Eds), pp. 345–367. NATO Advanced Studies Institute on Nonlinear Phenomena in Physics and Biology.

  • Silk, W. K. 1989. Growth rate patterns which maintain a helical tube.J. theor. Biol. 138, 311–327.

    Google Scholar 

  • Simons, P. 1992.The Action Plant: Movement and Nervous Behaviour in Plants. Oxford: Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubkin, S. Unidirectional waves on rings: Models for chiral preference of circumnutating plants. Bltn Mathcal Biology 56, 795–810 (1994). https://doi.org/10.1007/BF02458268

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458268

Keywords

Navigation