Skip to main content

Ultradian Growth Oscillations in Organs: Physiological Signal or Noise?

  • Chapter
  • First Online:
Rhythms in Plants

Abstract

This review examines ultradian oscillatory growth in the multicellular organs of vascular plants. My objective is to derive insight about the underlying physiological processes powering expansion. If the process of diffuse growth is inherently oscillatory, then it is reasonable to expect entrainment of these cellular oscillators across a tissue and the emergence of coherent macroscopic growth oscillations. After reviewing studies of circumnutation and linear growth, it appears that such entrainment is rare or weak. I argue that rather than reflecting the existence of an inherent oscillation in the process of diffuse growth, the regular ultradian movements of plant organs, when they occur, reflect successive responses to mechanical perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolfson KA, Sothern RB, Koukkari WL (1998) Ultradian movements of shoots of two species of soybeans Glycine soja (Sieb. and Zucc.) and Glycine max (L.) Merr. Chronobiol Int 15:1–11

    Article  CAS  PubMed  Google Scholar 

  • Badot P-M, Melin D, Garrec J-P (1990) Circumnutation in Phaseolus vulgaris. II. Potassium content in the free moving part of the shoot. Plant Physiol Biochem 28:123–130

    CAS  Google Scholar 

  • Baillaud L (1962) Mouvements autonomes des tiges, vrilles et autres organes à l’exception des organes volubiles et des feuilles. In: Handbuch der Pflanzenphysiologie, vol 17 part 2. Springer, Berlin Heidelberg New York, pp 562–634

    Google Scholar 

  • Barlow PW, Parker JS, Brain P (1994) Oscillations of axial plant organs. Adv Space Res 14(8):149–158

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI (1986) Redistribution of growth during phototropism and nutation in the pea epicotyl. Planta 169:406–414

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI, Iino M, Green PB, Briggs WR (1985) High-resolution measurements of growth during first positive phototropism in maize. Plant Cell Environ 8:595–603

    Article  Google Scholar 

  • Behringer FJ, Davies PJ, Reid JB (1990) Genetic analysis of the role of gibberellin in the red light inhibition of stem elongation in etiolated seedlings. Plant Physiol 94:432–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berg AR, Peacock K (1992) Growth patterns in nutating and nonnutating sunflower (Helianthus annuus) hypocotyls. Am J Bot 79:77–85

    Article  Google Scholar 

  • Brown AH (1991) Gravity perception and circumnutation in plants. In: Bonting SL (ed) Advances in Space Biology and Medicine, vol 1. JAI Press, Kidlington, UK, pp 129–153

    Google Scholar 

  • Brown AH, Chapman DK, Lewis RF, Venditti AL (1990) Circumnutations of sunflower hypocotyls in satellite orbit. Plant Physiol 94:233–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caré A-F, Nefed’ev L, Bonnet B, Millet B, Badot P-M (1998) Cell elongation and revolving movement in Phaseolus vulgaris L. twining shoots. Plant Cell Physiol 39:914–921

    Article  Google Scholar 

  • Castle ES (1940) Discontinuous growth of single plant cells measured at short intervals, and the theory of intussusception. J Cell Comp Physiol 15:285–298

    Article  CAS  Google Scholar 

  • Chavarría-Krasuer A, Nagel KA, Palme K, Schurr U, Walter A, Scharr H (2008) Spatio-temporal quantification of differential growth processes in root growth zones based on a novel combination of image sequence processing and refined concepts describing curvature production. New Phytol 177:811–821

    Article  Google Scholar 

  • Clifford PE, Fenson DS, Munt BI, McDowell WD (1982) Lateral stress initiates bending responses in dandelion peduncles: a clue to geotropism? Can J Bot 60:2671–2673

    Article  Google Scholar 

  • Comparot S, Morillon R, Badot B-M (2000) Water permeability and revolving movement in Phaseolus vulgaris L. twining shoots. Plant Cell Physiol 41:114–118

    Article  CAS  PubMed  Google Scholar 

  • Coutand C, Moulia B (2000) Biomechanical study of the effect of a controlled bending on tomato stem elongation: local strain sensing and spatial integration of the signal. J Exp Bot 51:1825–1842

    Article  CAS  PubMed  Google Scholar 

  • Coutand C, Julien JL, Moulia B, Mauget JC, Guitard D (2000) Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis. J Exp Bot 51:1813–1824

    Article  CAS  PubMed  Google Scholar 

  • Darwin F, Pertz DFM (1892) On the artificial production of rhythm in plants. Ann Bot 6:245–264

    Google Scholar 

  • Darwin F, Pertz DFM (1903) On the artificial production of rhythm in plants: with a note on the position of maximum heliotropic stimulation. Ann Bot 17:93–106

    Google Scholar 

  • Degli Agosti R, Jouve L, Greppin H (1997) Computer-assisted measurements of plant growth with linear variable differential transformer (LVDT) sensors. Arch Sci Genève 50:233–244

    CAS  Google Scholar 

  • Durham Brooks TL, Miller ND, Spalding EP (2010) Plasticity of arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis. Plant Physiol 152:206–216

    Article  PubMed Central  Google Scholar 

  • Erickson RO, Sax KB (1956) Elemental growth rate of the primary root of Zea mays. Proc Am Philos Soc 100:487–498

    Google Scholar 

  • Fisher JE (1964) Evidence of circumnutational growth movements of rhizomes of Poa pratensis L. that aid in soil penetration. Can J Bot 42:293–299

    Article  Google Scholar 

  • Goldbeter A (1996) Biochemical oscillations and cellular rhythms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gotô N, Chiba Y (1983) Oscillation in the growth rate and shortening of the lag time for IAA response by cotyledons, gibberellic acid and sucrose in bean hypocotyls. Plant Cell Physiol 24:1297–1303

    Google Scholar 

  • Hasenstein KH (1991) Measurement of circumnutation in maize roots. Microgravity Sci Technol 4:262–266

    CAS  PubMed  Google Scholar 

  • Hatakeda Y, Kamada M, Goto N, Fukaki H, Tasaka M, Suge H, Takahashi H (2003) Gravitropic response plays an important role in the nutational movements of the shoots of Pharbitis nil and Arabidopsis thaliana. Physiol Plant 118:464–473

    Article  CAS  Google Scholar 

  • Hayashi Y, Nishiyama H, Tanoi K, Ohya T, Nihei N, Tanioka K, Nakanishi TM (2004) An aluminum influence on root circumnutation in dark revealed by a new super-HARP (high-gain avalanche rushing amorphous photoconductor) camera. Plant Cell Physiol 45:351–356

    Article  CAS  PubMed  Google Scholar 

  • Heathcote DG (1966) A new type of rhythmic plant movement: micronutation. J Exp Bot 17:690–695

    Article  Google Scholar 

  • Heathcote DG, Idle ERIC (1965) Nutation in seedling Phaseolus multiflorus. Ann Bot 29:563–577

    Google Scholar 

  • Hejnowicz Z, Sievers A (1995) Proton efflux from outer layer of the peduncle of tulip in gravitropism and circumnutation. Bot Acta 108:7–13

    Article  CAS  Google Scholar 

  • Iijima M, Matsushita N (2011) A circadian and an ultradian rhythm are both evident in root growth of rice. J Plant Physiol 168:2072–2080

    Article  CAS  PubMed  Google Scholar 

  • Inoue N, Arase T, Hagiwara M, Amano T, Hayashi T, Ikeda R (1999) Ecological significance of root tip rotation for seedling establishment of Oryza sativa L. Ecol Res 14:31–38

    Article  Google Scholar 

  • Israelsson D, Johnsson A (1967) A theory for circumnutations in Helianthus annuus. Physiol Plant 20:957–976

    Article  Google Scholar 

  • Jiang Z, Staude W (1989) An interferometric method for plant growth measurements. J Exp Bot 40:1169–1173

    Article  Google Scholar 

  • Johnsson A (1997) Circumnutations: results from recent experiments on Earth and in space. Planta 203:S147–S158

    Article  CAS  PubMed  Google Scholar 

  • Johnsson A, Heathcote D (1973) Experimental evidence and models on circumnutations. Z Pflanzenphysiol 70:371–401

    Article  Google Scholar 

  • Johnsson A, Solheim BGB, Iversen T-H (2009) Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol 182:621–629

    Article  CAS  PubMed  Google Scholar 

  • Jouve L, Greppin H, Degli Agosti R (2000) Floral stem growth of arabidopsis ecotypes. II. Short time scale events and evidence for ultradian rhythms. Arch Sci Genève 53:215–224

    Google Scholar 

  • Kerckhoffs LHJ, Sengers MMT, Kendrick RE (1997) Growth analysis of wild-type and photomorphogenic-mutant tomato plants. Physiol Plant 99:309–315

    Article  CAS  Google Scholar 

  • Kitazawa D, Hatakeda Y, Kamada M, Fujii N, Miyazawa Y, Hoshino A, Iida S, Fukaki H, Morita MT, Tasaka M, Suge H, Takahashi H (2005) Shoot circumnutation and winding movements require gravisensing cells. Proc Natl Acad Sci USA 102:18742–18747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosuge K, Iida S, Katou K, Mimura T (2013) Circumnutation on the water surface: female flowers of Vallisneria. Sci Rep 3:1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kristie DN, Jolliffe PA (1986) High-resolution studies of growth oscillations during stem elongation. Can J Bot 64:2399–2405

    Article  Google Scholar 

  • Liptay A, Barron JL, Jewett T, van Wesenbeeck I (1995) Oscillations in corn seedling growth as measured by optical flow. J Am Soc Hort Sci 120:379–385

    Google Scholar 

  • List A Jr (1969) Transient growth responses of the primary roots of Zea mays. Planta 87:1–19

    Article  PubMed  Google Scholar 

  • MacDonald IR, Gordon DC, Hart JW (1987) Cyclamen coiling—the migration of a growth response. Plant Cell Environ 10:613–617

    Google Scholar 

  • Mielewczik M, Friedli M, Kirchgessner N, Walter A (2013) Diel leaf growth of soybean: a novel method to analyze two-dimensional leaf expansion in high temporal resolution based on a marker tracking approach (Martrack Leaf). Plant Methods 9:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Migliaccio F, Tassone P, Fortunati A (2013) Circumnutation as an autonomous root movement in plants. Amer J Bot 100:4–13

    Article  CAS  Google Scholar 

  • Millet B, Koukkari WL (1990) Ultradian oscillations of three variables in the circumnutation movements of shoots. Chronobiologia 17:53–58

    CAS  PubMed  Google Scholar 

  • Millet B, Melin D, Badot P-M (1988) Circumnutation in Phaseolus vulgaris. I. Growth, osmotic potential and cell ultrastructure in the free-moving part of the shoot. Physiol Plant 72:133–138

    Article  Google Scholar 

  • Obrović V, Poff KL (1997) Interaction of light and gravitropism with nutation of hypocotyls of Arabidopsis thaliana seedlings. Plant Growth Regul 23:141–146

    Article  Google Scholar 

  • Peacock K, Berg AR (1994) Effect of mechanical stress on sunflower (Helianthus annuus L.) hypocotyl growth. Ann Bot 74:661–666

    Article  Google Scholar 

  • Penny D, Penny P, Marshall DC (1974) High resolution measurement of plant growth. Can J Bot 52:959–969

    Article  Google Scholar 

  • Popova L, Russino A, Ascrizzi A, Mazzolai B (2012) Analysis of movement in primary maize roots. Biologia 67:517–524

    Article  Google Scholar 

  • Prat R, Parésys G (1995) High resolution study of plant cell growth kinetics. Plant Physiol Biochem 28:123–130

    Google Scholar 

  • Prat R, Kellershohn N, Ricard J (1996) Aperiodic (‘chaotic’) behavior of plant cell wall extension. II. Periodic and aperiodic oscillations of the elongation rate of a system of plant cells. Chaos Solitons Fractals 7:1119–1125

    Article  CAS  Google Scholar 

  • Proseus TE, Ortega JKE, Boyer JS (1999) Separating growth from elastic deformation during cell enlargement. Plant Physiol 119:775–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz Fernandez S, Wagner E (1994) A new method of measurement and analysis of the stem extension growth rate to demonstrate complete synchronization of Chenopodium rubrum plants by environmental conditions. J Plant Physiol 144:362–369

    Article  Google Scholar 

  • Salamon P, List A Jr, Grenetz PS (1973) Mathematical analysis of plant growth. Zea mays primary roots. Plant Physiol 51:635–640

    CAS  Google Scholar 

  • Satter RL (1979) Leaf movements and tendril curling. In: Haupt W, Feinleib ME (eds) Encyclopedia of Plant Physiology, New Series, vol 7. Physiology of Movements. Springer, Berlin Heidelberg New York, pp 442–484

    Google Scholar 

  • Schuster J, Engelmann W (1997) Circumnutations of Arabidopsis thaliana seedlings. Biol Rhythm Res 28:422–440

    Article  Google Scholar 

  • Shabala SN, Newman IA (1997) Proton and calcium flux oscillations in the elongation region correlate with root nutation. Physiol Plant 100:917–926

    Article  CAS  PubMed  Google Scholar 

  • Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in arabidopsis seedlings. Current Biol 24:1887–1892

    Article  CAS  Google Scholar 

  • Spurný M (1966) Spiral feedback oscillations of growing hypocotyl with radicle in Pisum sativum L. Biol Plantarum 8:381–392

    Article  Google Scholar 

  • Spurný M (1975) Elongation and circumnutation oscillations of hypocotyl of pine seedlings (Pinus sylvestris L.). Biol Plantarum 17:43–49

    Article  Google Scholar 

  • Spurný M, Koutná R, Čížková R, Konečná D (1978) Growth and nutation parameters of primary root of pedunculated oak (Quercus robur L.). Biol Plantarum 20:167–172

    Article  Google Scholar 

  • Stolarz M, Krol E, Dziubinska H, Zawadzki T (2008) Complex relationship between growth and circumnutations in Helianthus annuus stem. Plant Signal Behav 3:376–380

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanimoto M, Tremblay R, Colasanti J (2008) Altered gravitropic response, amyloplast sedimentation and circumnutation in the arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Mol Biol 67:57–69

    Article  CAS  PubMed  Google Scholar 

  • Thompson MV, Holbrook NM (2004) Root-gel interactions and the root waving behavior of arabidopsis. Plant Physiol 135:1822–1837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Weele CM, Jiang H, Palaniappan KK, Ivanov VB, Palaniappan K, Baskin TI (2003) A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth: roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol 132:1138–1148

    Article  PubMed Central  PubMed  Google Scholar 

  • Vollsnes AV, Futsaether CM, Bengough AG (2010) Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocimetry. Eur J Soil Sci 61:926–939

    Article  Google Scholar 

  • Walter A, Spies H, Terjung S, Küsters R, Kirchgessner N, Schurr U (2002) Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Bot 53:689–698

    Article  CAS  PubMed  Google Scholar 

  • Walter A, Feil R, Schurr U (2003) Expansion dynamics, metabolite composition and substance transfer of the primary root growth zone of Zea mays L. grown in different external nutrient availabilities. Plant Cell Environ 26:1451–1466

    Article  CAS  Google Scholar 

  • Walter A, Silk WK, Schurr U (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Annu Rev Plant Biol 60:279–304

    Article  CAS  PubMed  Google Scholar 

  • Wiese A, Christ MM, Virnich O, Schurr U, Walter A (2007) Spatio-temporal leaf growth patterns of Arabidopsis thaliana and evidence for sugar control of the diel leaf growth cycle. New Phytol 174:752–761

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Law DM, Davies PJ (1993) Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiol 102:717–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshihara T, Iino M (2005) Circumnutation of rice coleoptiles: its occurrence, regulation by phytochrome, and relationship with gravitropism. Plant Cell Environ 28:134–146

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory on plant morphogenesis is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S Department of Energy through Grant DE-FG-03ER15421. I thank Jacques Dumais (Harvard University) and Darren Wells (University of Nottingham) for clarifying comments and Arthur R. Berg (University of Aberdeen) for a color version of his figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias I. Baskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baskin, T.I. (2015). Ultradian Growth Oscillations in Organs: Physiological Signal or Noise?. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20517-5_1

Download citation

Publish with us

Policies and ethics