Skip to main content
Log in

Evolutionary genetics of birds IV rates of protein divergence in waterfowl (Anatidae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

An electrophoretic comparison of proteins in 26 species of waterfowl (Anatidae), representing two major subfamilies and six subfamilial tribes, led to the following major conclusions: (1) the genetic data, analyzed phenetically and cladistically, generally support traditional concepts of evolutionary relationships, although some areas of disagreement are apparent; (2) species and genera within Anatidae exhibit smaller genetic distances at protein-coding loci than do most non-avian vertebrates of equivalent taxonomic rank; (3) the conservative pattern of protein differentiation in Anatidae parallels patterns previously reported in Passeriforme birds. If previous taxonomic assignments and ages of anatid fossils are reliable, it would appear that the conservative levels of protein divergence among living species may not be due to recent age of the family, but rather to a several-fold deceleration in rate of protein evolution relative to non-avian vertebrates.

Since it now appears quite possible that homologous proteins can evolve at different rates in different phylads, molecular-based conclusions about absolute divergence times for species with a poor fossil record should remain appropriately reserved. However, the recognition and study of the phenomenon of apparent heterogeneity in rates of protein divergence across phylads may eventually enhance our understanding of molecular and organismal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise, J. C. & Aquadro, C. F., 1982. A comparative summary of genetic distances in the vertebrates. Evol. Biol. 15: 151–185.

    Google Scholar 

  • Avise, J. C., Patton, J. C. & Aquadro, C. F., 1980a. Evolutionary genetics of birds I. Relationships among North American thrushes and allies. The Auk 97: 135–147.

    Google Scholar 

  • Avise, J. C., Patton, J. C. & Aquadro, C. F., 1980b. Evolutionary genetics of birds II. Conservative protein evolution in North American sparrows and relatives. Syst. Zool. 29: 323–334.

    Article  Google Scholar 

  • Avise, J. C., Patton, J. C. & Aquadro, C. F., 1980c. Evolutionary genetics of birds III. Comparative molecular evolution in New World warblers (Parulidae) and rodents (Cricetinae). J. Hered. 71: 303–310.

    CAS  Google Scholar 

  • Avise, J. C., Smith, M. H. & Selander, R. K., 1974. Biochemical polymorphism and systematics in the genus Peromyscus. VI. The boylii species group. J. Mamm. 55: 751–763.

    CAS  Google Scholar 

  • Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. & Perez-Salas, S., 1972. Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.

    PubMed  CAS  Google Scholar 

  • Baker, C. M. Ann & Hanson, H. C., 1966. Molecular genetics of avian proteins VI. Evolutionary implications of blood proteins of eleven species of geese. Comp. Biochem. Physiol. 17: 997–1006.

    Article  PubMed  CAS  Google Scholar 

  • Barrowclough, G. F. & Corbin, K. W., 1978. Genetic variation and differentiation in the Parulidae. The Auk 95: 691–702.

    Google Scholar 

  • Barrowclough, G. F., Corbin, K. W. & Zink, R. M., 1981. Genetic differentiation in the Procellariiformes. Comp. Biochem. Physiol. 6913: 629–632.

    Google Scholar 

  • Bellrose, F. C., 1976. Ducks, geese and swans of North America. Stackpole Books, Harrison, Penn.

    Google Scholar 

  • Brodkorb, P., 1964. Catalogue of fossil birds, part 2. Bull. Fla St. Mus. 8: 195–335.

    Google Scholar 

  • Corbin, K. W., Sibley, C. G., Ferguson, A., Wilson, A. C., Brush, A. H. & Ahlquist, J. E., 1974. Genetic polymorphism in New Guinea starlings of the genus Aplonis. Condor 76: 307–318.

    Google Scholar 

  • Dayhoff, M. O., 1972. Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • Delacour, J., 1954. The Waterfowl of the world. Hamlyn Publ. Group Ltd., London.

    Google Scholar 

  • Delacour, J. & Mayr, E., 1945. The family Anatidae. Wilson Bull. 57: 3–55.

    Google Scholar 

  • Farris, J. S., 1972. Estimating phylogenetic trees from distance matrices. Amer. Nat. 106: 645–668.

    Article  Google Scholar 

  • Graham, F., Jr., 1979. Farewell, Mexican duck. Audubon 81: 24–26.

    Google Scholar 

  • Gutierrez, R. J., Zink, R. M. & Yang, S. Y., 1983. Genic variation, systematic and biogeographic relationships of some galliform birds. The Auk 100: 33–47.

    Google Scholar 

  • Hennig, W., 1966. Phylogenetic Systematics. Univ. Illinois Press, Chicago.

    Google Scholar 

  • Hibbard, C. W., 1968. Paleontology. Pp. 1-26 in: J. A. King (ed.), Biology of Peromyscus (Rodentia), Spec. Pub. Am. Soc. Mamm. 2.

  • Howard, H., 1964. Fossil Anseriformes. Pp. 233–326 in: J. Delacour (ed.), The Waterfowl of the world, V. 4, Country Life Ltd, London.

    Google Scholar 

  • Johnsgard, P. A., 1968. Waterfowl. Univ. Nebraska Press, Lincoln, Nebraska.

    Google Scholar 

  • Martin, R. F. & Selander, R. K., 1975. Morphological and biochemical evidence of hybridization between cave and barn swallows. Condor 77: 362–364.

    Google Scholar 

  • Mengel, R. N., 1964. The probable history of species formation in some northern wood warblers (Parulidae). Living Bird 3: 9–43.

    Google Scholar 

  • Morony, J. J., Bock, W. J. & Farrand J., Jr., 1975. Reference list of the birds of the world. Spec. Pub. Am. Mus. Nat. Hist., New York.

    Google Scholar 

  • Nei, M., 1971. Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. Am. Nat. 105: 385–398.

    Article  CAS  Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Article  Google Scholar 

  • Nei, M., 1975. Molecular population genetics and evolution. North Holland, Amsterdam.

    Google Scholar 

  • Olson, S. L. & Feduccia, A., 1980. Presbyornis and the origin of the Anseriformes (Ayes: Charadriomorphae). Smithsonian Cont. Zool. 323: 1–24.

    Google Scholar 

  • Patton, J. C. & Avise, J. C., 1983. An empirical evaluation of qualitative Hennigian analyses of protein electrophoretic data. J. mol. Evol. 19: 244–254.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J. C., Baker, R. J. & Avise, J. C., 1981. Phenetic and cladistic analyses of biochemical evolution in peromyscine rodents. Pp. 288–308 in: Mammalian population genetics, M. H. Smith and J. Joule (eds.), Univ. Ga. Press, Athens.

    Google Scholar 

  • Powell, J. R., 1976. Protein variation in natural populations of animals. Evol. Biol. 8: 79–119.

    Google Scholar 

  • Prager, E. M. & Wilson, A. C., 1975. Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution. Proc. natn. Acad. Sci. U.S.A. 72: 200–204.

    CAS  Google Scholar 

  • Robbins, C. S., Bruun, B. & Zim, H. S., 1966. Birds of North America. Golden Press, New York.

    Google Scholar 

  • Rogers, J. S., 1972. Measures of genetic similarity and genetic distance., Studies in Genetics VII. Univ. Texas Publ. 7213: 145–153.

  • Romer, A. S., 1966. Vertebrate Paleontology. Univ. of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Sarich, V. M., 1977. Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 265: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Selander, R. K., 1976. Genic variation in natural populations. Pp. 21–45 in: Molecular evolution, F. J. Ayala (ed.), Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B., 1971. Biochemical polymorphism and systematics in the genus Peromyscus I. Variation in the old-field mouse (Peromyscus polionotus). Studies in Genetics VI. Univ. Texas Publ. 7T03: 43–90.

  • Sibley, C. G. & Ahlquist, J. E., 1972. A comparative study of the egg-white proteins of non-passerine birds. Peabody Mus. Nat. Hist. Bull. 39, Yale University, New Haven, Conn.

    Google Scholar 

  • Smith, J. K. & Zimmerman, E. G., 1976. Biochemical genetics and evolution of North American blackbirds, family Icteridae. Comp. Biochem. Physiol. 53B: 319–324.

    Google Scholar 

  • Sneath, P. H. A. & Sokal, R. R., 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.

    Google Scholar 

  • Sokal, R. R., 1975. Mayr on cladism — and his critics. Syst. Zool. 24: 257–262.

    Article  Google Scholar 

  • Wetmore, A., 1938. A fossil duck from the Eocene of Utah. J. Paleont. 12: 280–283.

    Google Scholar 

  • Wilson, A. C., Carlson, S. S. & White, T. J., 1977. Biochemical evolution. Ann. Rev. Biochem. 46: 573–639.

    Article  PubMed  CAS  Google Scholar 

  • Woolfenden, G. E., 1961. Postcranial osteology of the waterfowl. Bull. Florida State Mus. 6: 1–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, J.C., Avise, J.C. Evolutionary genetics of birds IV rates of protein divergence in waterfowl (Anatidae). Genetica 68, 129–143 (1986). https://doi.org/10.1007/BF02424410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424410

Keywords

Navigation