Skip to main content
Log in

Investigation of the state of the electrochemically generated adsorbed O species on Au films interfaced with Y2O3-doped-ZrO2

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Adsorbed O species on Au interfaced with Y2O3-doped-ZrO2 are generated by electrochemical O2− supply. It was found that two oxygen chemisorbed states are formed, which desorb at 420 °C (state α) and 550 °C (state β) with activation energies of desorption ranging between 115–145 kJ/mol and 235–270 kJ/mol, respectively. The strong interaction of the β-state O species with the Au surface causes an over 600 mV increase in Au surface potential and work function while the α-state O species is formed at even more positive catalyst-electrode potential. State α is attributed to normally adsorbed atomic O while the more ionic state β is only created electro-chemically and is mainly responsible for the work function increase of the Au catalyst-electrode surface. Their desorption activation energies of both states decrease linearly with increasing catalyst-electrode potential with slopes of the order of four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7. References

  1. M. Haruta, Catalysis Today,36, 153 (1997).

    Article  CAS  Google Scholar 

  2. T. Hayakawa, K. Sato, T. Tsunoda, K. Suzuki, M. Shimizu and K. Takehira, J. Chem. Soc., Chem. Commun. 1743 (1994).

  3. O.A. Marina, V.A. Sobyanin and V.D. Belyaev, Catal. Today13, 567 (1992).

    Article  CAS  Google Scholar 

  4. C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides in: Modern Aspects of Electrochemistry (J.O' M. Bockris, B.E. Conway and R.E. White, Eds.), Number 29, p. 57 (1996).

  5. D. Tsiplakides and C.G. Vayenas, J. Electrochem. Soc.148, 1 (2001).

    Article  Google Scholar 

  6. S.G. Neophytides, S. Zafeiratos and S. Kennou, Solid State Ionics136–137, 801–806 (2000).

    Article  Google Scholar 

  7. M.E. Schrader, J. Colloid Interface Sci.59, 456 (1977).

    Article  CAS  Google Scholar 

  8. M.E. Schrader, Surf. Sci.78, L227 (1978).

  9. M.A. Chesters, and G.A. Somorjai, Surf. Sci.52, 21 (1975).

    Article  CAS  Google Scholar 

  10. P. Legare, L. Hilaire, M. Sotto, and G. Maire, Surf. Sci.91, 175 (1980).

    Article  CAS  Google Scholar 

  11. D.D. Eley, and P.B. Moore, Surf. Sci.76, L599 (1978).

  12. N.D.S. Canning, D. Outka, and R.J. Madix, Surf. Sci.141, 240 (1984).

    Article  CAS  Google Scholar 

  13. J.J. Pireaux, M. Liehr, P.A. Thiry, J.P. Delrue, and R. Caudano, Surf. Sci.141, 221 (1984).

    Article  CAS  Google Scholar 

  14. J.W. Schultze, Electrochim. Acta17, 451 (1972).

    Article  CAS  Google Scholar 

  15. M.I. Florit, M.E. Martins, and A.J. Arvia, J. Electroanal. Chem.126, 255 (1981).

    CAS  Google Scholar 

  16. F. Chao, M. Costa, and A. Tadjeddine, Surf. Sci.46, 265 (1974).

    Article  CAS  Google Scholar 

  17. M.M. Jaksic, B. Johansen, and R. Tunold, International Journal of Hydrogen Energy18, 91 (1993).

    Article  CAS  Google Scholar 

  18. M. Peuckert, F.P. Coenen, and H.P. Bonzel, Surf. Sci.141, 515 (1984).

    Article  CAS  Google Scholar 

  19. R.R. Ford, and J. Pritchard, JCS Chemistry Commun. 362 (1968).

  20. N.B. Bazhutin, G.K. Boreskov, and V.I. Savshenko, Reaction Kinetics Catalysis Letters10, 337 (1979).

    Article  CAS  Google Scholar 

  21. S. Evans, E.L. Avans, D.E. Parry, M.J. Tricker, M.J. Walters, and J.M. Thomas, Faraday Trans. Chem. Soc. 97 (1974).

  22. J.J. Pireaux, M. Chtaib, J.P. Delrue, P.A. Thiry, M. Liehr, and R. Caudano, Surf. Sci.141, 211 (1984).

    Article  CAS  Google Scholar 

  23. M. Hecq, A. Hecq, and M. Liemans, J. Appl. Phys.49, 6176 (1978).

    Article  CAS  Google Scholar 

  24. A. Hecq, M. Vandy, and M. Hecq, J. Chem. Phys.72, 2876 (1980).

    Article  CAS  Google Scholar 

  25. N. Saliba, D.H. Parker, B.E. Koel, Surf. Sci.,410, 270 (1998).

    Article  CAS  Google Scholar 

  26. M.A. Lazaga, D.T. Wickham, D.H. Parker, G.N. Kastanas, and B.E. Koel, in: Catalytic Selective Oxidation (J.W. Hightower, and S.T. Oyama, Eds.), p. 90. ACS, Washington, DC, 1993.

    Google Scholar 

  27. D.H. Parker, and B.E. Koel, J. Vac. Sci. Technol.A8, 2585 (1990).

    Google Scholar 

  28. S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.,97, 8845 (1993).

    Article  CAS  Google Scholar 

  29. S.G. Neophytides, D. Tsiplakides and C.G. Vayenas, J. Catal., 178, 414–428 (1998).

    Article  CAS  Google Scholar 

  30. J.L. Falconer and R.J. Madix Surf. Sci.48, 393 (1975).

    Article  CAS  Google Scholar 

  31. Y. Uchida, X. Bao, K. Weiss, R. Schlogl, Surf. Sci.401, 469 (1998).

    Article  CAS  Google Scholar 

  32. D. Tsiplakides and C. G. Vayenas, J. Catal.185, 237 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiplakides, D., Neophytides, S.G. & Vayenas, C.G. Investigation of the state of the electrochemically generated adsorbed O species on Au films interfaced with Y2O3-doped-ZrO2 . Ionics 7, 203–209 (2001). https://doi.org/10.1007/BF02419230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02419230

Keywords

Navigation