Skip to main content
Log in

Assessing potential bioavailability of metals in sediments: A proposed approach

  • Forum
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Due to anthropogenic inputs, elevated concentrations of metals frequently occur in aquatic sediments. In order to make defensible estimates of the potential risk of metals in sediments and/or develop sediment quality criteria for metals, it is essential to identify that fraction of the total metal in the sediments that is bioavailable. Studies with a variety of benthic invertebrates indicate that interstitial (pore) water concentrations of metals correspond very well with the bioavailability of metals in test sediments. Many factors may influence pore water concentrations of metals; however, in anaerobic sediments a key phase controlling partitioning of several cationic metals (cadmium, nickel, lead, zinc, copper) into pore water is acid volatile sulfide (AVS). In this paper, we present an overview of the technical basis for predicting bioavailability of cationic metals to benthic organisms based on pore water metal concentrations and metal-AVS relationships. Included are discussions of the advantages and limitations of metal bioavailability predictions based on these parameters, relative both to site-specific assessments and the development of sediment quality criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, W. J., R. A. Kimerle, and R. G. Mosher. 1985. Aquatic safety assessment of chemicals sorbed to sediments. Pages 429–453in R. D. Cardwell, R. Purdy and R. C. Bahner (eds.), Aquatic toxicology and hazard assessment: Seventh symposium. STP 854. American Society for Testing and Materials, Philadelphia, Pennsylvania.

    Google Scholar 

  • Allen, H. E., G. Fu, and B. Deng. 1993. Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments.Environmental Toxicology and Chemistry 12:1441–1453.

    CAS  Google Scholar 

  • Ankley, G. T., G. L. Phipps, E. N. Leonard, D. A. Benoit, V. R. Mattson, P. A. Kosian, A. M. Cotter, J. R. Dierkes, D. J. Hansen, and J. D. Mahony. 1991. Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments.Environmental Toxicology and Chemistry 10:1299–1307.

    CAS  Google Scholar 

  • Ankley, G. T., V. R. Mattson, E. N. Leonard, C. W. West, and J. L. Bennett. 1993a. Predicting the acute toxicity of copper in freshwater sediments: Evaluation of the role of acid volatile sulfide.Environmental Toxicology and Chemistry 12:315–320.

    CAS  Google Scholar 

  • Ankley, G. T., E. N. Leonard, and V. R. Mattson. 1993b. Prediction of the bioaccumulation of metals from contaminated sediments by the oligochaete,Lumbriculus variegatus. Water Research (in press).

  • Berner, R. A. 1967. Thermodynamic stability of sedimentary iron sulfides.American Journal of Science 265:773–785.

    Article  CAS  Google Scholar 

  • Berry, W. J., D. J. Hansen, J. D. Mahony, D. L. Robson, and J. M. Corbin. 1991. The role of acid volatile sulfide in controlling the toxicity of a metals mixture in sediment. Page 91in Abstracts of the 12th Annual Meeting of the Society of Environmental Toxicology and Chemistry. November 1991. Seattle, Washington.

  • Campbell, P. G. C., and A. Tessier. 1991. Biological availability of metals in sediments: analytical approaches. Pages 161–174in J.-P. Vernet (ed.), Heavy metals in the environment. Elsevier, New York.

    Google Scholar 

  • Carlson, A. R., G. L. Phipps, V. R. Mattson, P. A. Kosian, and A. M. Cotter. 1991. The role of acid volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments.Environmental Toxicology and Chemistry 10:1309–1319.

    CAS  Google Scholar 

  • Di Toro, D. M., J. D. Mahony, D. J. Hansen, K. J. Scott, M. B. Hicks, S. M. Mayr, and M. S. Redmond. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide.Environmental Toxicology and Chemistry 9:1487–1502.

    Google Scholar 

  • Di Toro, D. M., C. Zarba, D. J. Hansen, R. C. Swartz, C. E. Cowan, H. E. Allen, N. A. Thomas, P. R. Paquin, and W. J. Berry. 1991. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals using equilibrium partitioning.Environmental Toxicology and Chemistry 10:1541–1583.

    Google Scholar 

  • Di Toro, D. M., J. D. Mahony, D. J. Hansen, K. J. Scott, A. R. Carlson, and G. T. Ankley. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments.Environmental Science and Technology 26:96–101.

    Article  Google Scholar 

  • Goldhaber, M. B. and I. R. Kaplan. 1974. The sulfur cycle. Pages 569–655in E. D. Goldberg (ed.), Sea, Vol. 5—Marine chemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Hansen, D. J., W. J. Berry, J. D. Mahony, A. R. Carlson, K. M. McKenna, and D. L. Robson. 1990. Acid volatile sulfide controls divalent metal toxicity in sediments. Page 88in Abstracts of the 11th Annual meeting of the Society of Environmental Toxicology and Chemistry, Washington, DC.

  • Leonard, E. N., V. R. Mattson, D. A. Benoit, R. A. Hoke, and G. T. Ankley. 1993. Seasonal variation of acid volatile sulfide in sediments from three northeastern Minnesota lakes.Hydrobiologia (in press).

  • Luoma, S. N. 1989. Can we determine the biological availability of sediment-bound trace elements?Hydrobiologia 176/177:379–396.

    Article  Google Scholar 

  • Mahony, J. D., D. M. Di Toro, A. M. Gonzalez, D. J. Hansen, W. J. Berry, and G. T. Ankley. 1991. A sediment component in addition to acid volatile sulfide that may further control toxicity of metals. Page 91in Abstracts of the 12th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Seattle, Washington.

  • Swartz, R. C., G. R. Ditsworth, D. W. Schults, and J. O. Lamberson. 1985. Sediment toxicity to a marine infaunal amphipod: Cadmium and its interaction with sewage sludge.Marine Environmental Research 18:133–153.

    Article  Google Scholar 

  • Swartz, R. C., D. W. Schults, T. H. DeWitt, G. R. Ditsworth, and J. O. Lamberson. 1990. Toxicity of fluoranthene in sediment to marine amphipods: A test of the equilibrium partitioning approach to sediment quality criteria.Environmental Toxicology and Chemistry 9:1071–1080.

    CAS  Google Scholar 

  • Tessier, A., and P. G. C. Campbell. 1987. Partitioning of trace metals in sediments: Relationships with bioavailability.Hydrobiologia 149:43–52.

    Article  CAS  Google Scholar 

  • Tessier, A., Y. Couillard, P. G. C. Campbell, and J. C. Auclair. 1993. Modeling cadmium partitioning in oxic lake sediments and Cd concentrations in the freshwater bivalveAnodonta grandis (Mollusca, Pelecypoda).Limnology and Oceanography 38:1–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankley, G.T., Thomas, N.A., Di Toro, D.M. et al. Assessing potential bioavailability of metals in sediments: A proposed approach. Environmental Management 18, 331–337 (1994). https://doi.org/10.1007/BF02393863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02393863

Key words

Navigation