Skip to main content
Log in

Polymer diffusion in quenched disorder: A renormalization group approach

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the diffusion of polymers through quenched short-range correlated random media by renormalization group (RG) methods, which allow us to derive universal predictions in the limit of long chains and weak disorder. We take local quenched random potentials with second momentv and the excluded-volume interactionu of the chain segments into account. We show that our model contains the relevant features of polymer diffusion in random media in the RG sense if we focus on the local entropic effects rather than on the topological constraints of a quenched random medium. The dynamic generating functional and the general structure of its perturbation expansion inu andv are derived. The distribution functions for the center-of-mass motion and the internal modes of one chain and for the correlation of the center of mass motions of two chains are calculated to one-loop order. The results allow for sufficient cross-checks to have trust in the one-loop renormalizability of the model. The general structure as well as the one-loop results of the integrated RG flow of the parameters are discussed. Universal results can be found for the effective static interactionw≔u−v≥0 and for small effective disorder coupling\(\bar v(l)\) on the intermediate length scalel. As a first physical prediction from our analysis, we determine the general nonlinear scaling form of the chain diffusion constant and evaluate it explicitly as

for\(\bar v(l) \ll 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. des Cloizeaux and G. Jannink,Les Polymeres en Solution (Les Ulis-France, 1987, in English: Clarendon Press, Oxford 1990).

  2. U. Ebert and L. Schäfer,Makromol. Chem./Macromol. Symp. 81:31 (1994).

    Google Scholar 

  3. L. Schäfer, Private communication.

  4. Y. Oono,Adv. Chem. Phys. 61:301 (1985).

    Google Scholar 

  5. B. Schaub, D. B. Creamer, and H. Johannesson,J. Phys. A 21:1431 (1988) and references therein.

    Article  Google Scholar 

  6. M. Doi and S. F. Edwards,The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

    Google Scholar 

  7. A. Baumgärtner and M. Muthukumar,J. Chem. Phys. 87:3082 (1987); M. Muthukumar and A. Baumgärtner,Macromolecules 22:1937, 1941 (1989).

    Article  Google Scholar 

  8. J. Machta,Phys. Rev. A 40:1720 (1989).

    Article  Google Scholar 

  9. T. P. Lodge, N. A. Rotstein, and S. Prager,Adv. Chem. Phys. 79:1 (1990).

    Google Scholar 

  10. G. C. Martinez-Mekler and M. A. Moore,J. Phys. Lett. (Paris)42:L 413 (1981).

    Google Scholar 

  11. U. Ebert and L. Schäfer,Europhys. Lett. 21:741 (1993); L. Schäfer and U. Ebert,Makromol. Chem./Macromol. Symp. 81:17 (1994).

    Google Scholar 

  12. U. Ebert, A. Baumgärtner, and L. Schäfer,Phys. Rev. E [to appear].

  13. B. Duplantier,Phys. Rev. A 38:364 (1988).

    Article  PubMed  Google Scholar 

  14. A. B. Harris,Z. Phys. B 49:347 (1983).

    Article  Google Scholar 

  15. R. Bausch, H. K. Janssen, and H. Wagner,Z. Phys. B 24:113 (1976).

    Article  Google Scholar 

  16. H. K. Janssen,Kritische Dynamik, Lecture notes, University of Düsseldorf (1985).

  17. P.-G. de Gennes,Physics 3:37 (1967).

    Google Scholar 

  18. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  19. A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov,Sov. Phys. JETP 50:521 (1979).

    Google Scholar 

  20. K. G. Chetyrkin, S. G. Gorischny, S. A. Larin, and F. V. Tkachov,Phys. Lett. B 132:351 (1983).

    Article  Google Scholar 

  21. H. Kleinert, J. Neu, V. Schulte-Frohlinde, K. G. Chetyrkin, and S. A. Larin,Phys. Lett. B 272:39 (1991).

    Article  Google Scholar 

  22. R. Schloms and V. Dohm,Nucl. Phys. B 328:639 (1989).

    Article  Google Scholar 

  23. B. Krüger and L. Schäfer,J. Phys. I. France 4:757 (1994).

    Article  Google Scholar 

  24. L. Schäfer, U. Lehr, and Ch. Kapeller,J. Phys. I France 1:211 (1991).

    Article  Google Scholar 

  25. L. Schäfer and C. Kappeler,J. Chem. Phys. 99:6135 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, U. Polymer diffusion in quenched disorder: A renormalization group approach. J Stat Phys 82, 183–265 (1996). https://doi.org/10.1007/BF02189230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189230

Key Words

Navigation