Skip to main content
Log in

Possible first-order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in the vicinity of the vortex unbinding transition. The model is mapped onto an effective interacting vortex gas by a systematic perturbative elimination of all fluctuating degrees of freedom (amplitudeand phase of the order parameter field) except the vortex positions. In the Coulomb gas descriptions derived previously in the literature, thermal amplitude fluctuations were neglected altogether. We argue that if one includes the latter, the vortices still form a two-dimensional Coulomb gas, but the vortex fugacity can be substantially raised. Under the assumption that Minnhagen's generic phase diagram of the two-dimensional Coulomb gas is correct, our results then point to a first-order transition rather than a Kosterlitz-Thouless transition, provided the Ginzburg-Landau correlation length is large enough in units of a microscopic cutoff lenght for fluctuations. The experimental relevance of these results is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Penrose and L. Onsager,Phys. Rev. 104:576 (1956); C. N. Yang,Rev. Mod. Phys. 34:694 (1962).

    Article  Google Scholar 

  2. N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17:1133 (1966); P. C. Hohenberg,Phys. Rev. 158:383 (1967).

    Article  Google Scholar 

  3. G. Lasher,Phys. Rev. 172:224 (1968).

    Article  Google Scholar 

  4. M. E. Fisher, M. N. Barber, and D. Jasnow,Phys. Rev. A 8:1111 (1973).

    Article  Google Scholar 

  5. D. J. Bishop and J. D. Reppy,Phys. Rev. B 22:5171 (1980).

    Article  Google Scholar 

  6. M. R. Beasley, J. E. Mooij, and T. P. Orlando,Phys. Rev. Lett. 42:1165 (1979).

    Article  Google Scholar 

  7. B. I. Halperin and D. R. Nelson,J. Low Temp. Phys. 36:599 (1979).

    Article  Google Scholar 

  8. A. F. Hebard and A. T. Fiory,Phys. Rev. Lett. 44:291 (1980).

    Article  Google Scholar 

  9. A. F. Hebard and A. T. Fiory,Phys. Rev. Lett. 50:1603 (1983); A. T. Fiory, A. F. Hebard, and W. I. Glaberson,Phys. Rev. B 28:5075 (1983).

    Article  Google Scholar 

  10. C. Leemann, P. Flückiger, V. Marsico, J. L. Gavilano, P. K. Srivastava, P. Lerch, and P. Martinoli,Phys. Rev. Lett. 64:3082 (1990).

    Article  Google Scholar 

  11. S. Vadlamannatti, Q. Li, T. Venkatesan, W. L. McLean, and P. Lindenfeld,Phys. Rev. B 44:7094 (1991).

    Article  Google Scholar 

  12. V. L. Berezinskiî,Zh. Eksp. Teor. Fiz. 61:1144 (1971) [Sov. Phys. JETP 34:610 (1972)].

    Google Scholar 

  13. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 5:L124 (1972).

    Google Scholar 

  14. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).

    Google Scholar 

  15. D. R. Nelson, inPhase Transitions and Critical Phenomena, Vol. 7, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983), p. 1.

    Google Scholar 

  16. N. R. Werthamer, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 321; M. Cyrot,Rep. Prog. Phys. 36:103 (1973).

    Google Scholar 

  17. B. I. Halperin, inPhysics of Low-Dimensional Systems, Y. Nagaoka and S. Hikami eds. (Progress of Theoretical Physics, Kyoto, 1979), p. 53.

    Google Scholar 

  18. R. P. Feynman,Prog. Low Temp. Phys. 1:52 (1955); G. A. Williams,Phys. Rev. Lett. 59:1926 (1987);68:2054 (1992); S. R. Shenov,Phys. Rev. B. 40:5056 (1989).

    Google Scholar 

  19. P. Minnhagen,Rev. Mod. Phys. 59:1001 (1987).

    Article  Google Scholar 

  20. J. M. Kosterlitz,J. Phys. C 7:1046 (1974); P. B. Wiegmann,J. Phys. C 11:1583 (1978); D. J. Amit, Y. Y. Goldstein, and G. Grinstein,J. Phys. A 13:585 (1980).

    Google Scholar 

  21. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,Phys. Rev. B 16: 1217 (1977).

    Article  Google Scholar 

  22. D. R. Nelson and J. M. Kosterlitz,Phys. Rev. Lett. 39:1201 (1977).

    Article  Google Scholar 

  23. P. Minnhagen and G. G. Warren,Phys. Rev. B 24:2526 (1981).

    Article  Google Scholar 

  24. W. Janke and K. Nather,Phys. Lett. A 157:11 (1991).

    Article  Google Scholar 

  25. A. Jonsson, P. Minnhagen, and M. Nylén,Phys. Rev. Lett. 70:1327 (1993).

    Article  Google Scholar 

  26. J. M. Caillol and D. Levesque,Phys. Rev. B 33:499 (1986); J.-R. Lee and S. Teitel,Phys. Rev. Lett. 64:1483 (1990);66:2100 (1991).

    Article  Google Scholar 

  27. C. Leemann, P. Lerch, G. A. Racine, and P. Martinoli,Phys. Rev. Lett. 56:1291 (1986); P. Martinoli, P. Lerch, C. Leemann, and H. Beck, In Proceedings of the 18th Conference on Low Temperature Physics, Kyoto 1987,Jpn. J. Appl. Phys. 26:1999 (1987).

    Article  Google Scholar 

  28. B. Jeanneret, P. Flückiger, J. L. Gavilano, C. Leemann, and P. Martinoli,Phys. Rev. B 40:11374 (1989).

    Article  Google Scholar 

  29. R. Pelcovits, Ph.D. Thesis, Harvard University (1978).

  30. P. Minnhagen and M. Nylén,Phys. Rev. B 31:5768 (1985).

    Article  Google Scholar 

  31. P. Minnhagen,Phys. Rev. B 32:3088 (1985).

    Article  Google Scholar 

  32. J. M. Thyssen and H. J. F. Knops,Phys. Rev. B 38:9080 (1988).

    Article  Google Scholar 

  33. P. Minnhagen and M. Wallin,Phys. Rev. B 40:5109 (1989).

    Article  Google Scholar 

  34. A. P. Young,J. Phys. C 11:L453 (1978).

    Google Scholar 

  35. H. Weber and P. Minnhagen,Phys. Rev. B 38:8730 (1988).

    Article  Google Scholar 

  36. F. Mila,Phys. Rev. B 47:442 (1993).

    Article  Google Scholar 

  37. L. P. Gor'kov,Zh. Eksp. Teor. Fiz. 36:1918 (1959) [Sov. Phys. JETP 9:1364 (1959)].

    Google Scholar 

  38. J. Pearl,Appl. Phys. Lett 5:65 (1964).

    Article  Google Scholar 

  39. C. R. Hu,Phys. Rev. B 6:1756 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, D., Beck, H. Possible first-order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores. J Stat Phys 76, 361–395 (1994). https://doi.org/10.1007/BF02188667

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188667

Key Words

Navigation