Skip to main content
Log in

Trace maps as 3D reversible dynamical systems with an invariant

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

One link between the theory of quasicrystals and the theory of nonlinear dynamics is provided by the study of so-called trace maps. A subclass of them are mappings on a one-parameter family of 2D surfaces that foliate ℝ3 (and also ℂ3). They are derived from transfer matrix approaches to properties of 1D quasicrystals. In this article, we consider various dynamical properties of trace maps. We first discuss the Fibonacci trace map and give new results concerning boundedness of orbits on certain subfamilies of its invariant 2D surfaces. We highlight a particular surface where the motion is integrable and semiconjugate to an Anosov system (i.e., the mapping acts as a pseudo-Anosov map). We identify properties of symmetry and reversibility (time-reversal symmetry) in the Fibonacci trace map dynamics and discuss the consequences for the structure of periodic orbits. We show that a conservative period-boubling sequence can be identified when moving through the one-parameter family of 2D surfaces. By using generator trace maps, in terms of which all trace maps obtained from invertible two-letter substitution rules can be expressed, we show that many features of the Fibonacci trace map hold in general. The role of the Fricke character\(\hat I(x,y,z) = x^2 + y^2 + z^2 - 2xyz - 1\), its symmetry group, and reversibility for the Nielsen trace maps are described algebraically. Finally, we outline possible higher-dimensional generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Steinhardt and S. Ostlund, eds.,The Physics of Quasicrystals (World Scientific, Singapore, 1987).

    Google Scholar 

  2. M. Kohmoto, L. P. Kadanoff, and C. Tang,Phys. Rev. Lett. 50:1870 (1983) [reprinted in ref. 1].

    Article  Google Scholar 

  3. S. Ostlund, R. Pandit, D. Rand, H.-J. Schellnhuber, and E. D. Siggia,Phys. Rev. Lett. 50:1873 (1983) [reprinted in ref. 1]. P. J. Steinhardt and S. Ostlund, eds.,The Physics of Quasicrystals (World Scientific, Singapore, 1987).

    Article  Google Scholar 

  4. R. Fricke and F. Klein,Vorlessungen über automorphe Funktionen, Vol. 1 (Teubner, Leipzig, 1897).

    Google Scholar 

  5. R. D. Horowitz,Trans. Am. Math. Soc. 208:41 (1975).

    Google Scholar 

  6. J.-P. Allouche and J. Peyrière,C. R. Acad. Sci. Paris 302(II):1135 (1986).

    Google Scholar 

  7. B. Sutherland,Phys. Rev. Lett. 57:770 (1986).

    Article  Google Scholar 

  8. M. Baake, U. Grimm, and D. Joseph,Int. J. Mod. Phys. B 7:1527 (1993).

    Article  Google Scholar 

  9. J. A. G. Roberts and M. Baake, The dynamics of trace maps, inHamiltonian Mechanics: Integrability and Chaotic Behaviour, J. Seimenis, ed. (Plenum Press, New York, in press).

  10. P. Kramer,J. Phys. A 26:213, L245 (1993).

    Google Scholar 

  11. W. Magnus,Math. Z. 170:91 (1980).

    Article  Google Scholar 

  12. J. A. G. Roberts and G. R. W. Quispel,Phys. Rep. 216:63 (1992).

    Article  Google Scholar 

  13. W. Magnus, A. Karrass, and D. Solitar,Combinatorial Group Theory, 2nd ed. (Dover, New York, 1976).

    Google Scholar 

  14. A. J. Casson and S. A. Bleiler,Automorphisms of Surfaces after Nielsen and Thurston (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  15. J.-M. Luck, C. Godrèche, A. Janner, and T. Janssen,J. Phys. A 26:1951 (1993).

    Google Scholar 

  16. M. Lothaire,Combinatorics on Word (Addison-Wesley, Reading, Massachusetts, 1983).

    Google Scholar 

  17. J. Peyrière,J. Stat. Phys. 62:411 (1991).

    Article  Google Scholar 

  18. F. Wijnands,J. Phys. A 22:3267 (1989).

    Google Scholar 

  19. M. Kolar and M. K. Ali,Phys. Rev. A 42:7112 (1990).

    Article  Google Scholar 

  20. R. D. Horowitz,Commun. Pure Appl. Math. 25:635 (1972).

    Google Scholar 

  21. A. Whittemore,Proc. Am. Math. Soc. 40:383 (1973).

    Google Scholar 

  22. M. H. Vogt,Ann. Sci. Ecole Norm. Sup. (3) 6 (Suppl. 3) (1889).

  23. L. P. Kadanoff, Applications of scaling ideas to dynamics, inRegular and Chaotic Motions in Dynamical Systems, G. Velo and A.S. Wightman, eds. (Plenum Press, New York, 1985).

    Google Scholar 

  24. L. P. Kadanoff, Analysis of cycles for a volume preserving map, preprint, University of Chicago (1983) [cited in ref. 36]. M. Casdagli,Commun. Math. Phys. 107:295 (1986).

  25. R. L. Devaney,An Introduction to Chaotic Dynamical Systems, 2nd ed. (Addison-Wesley, Redwood City, California, 1989).

    Google Scholar 

  26. M. Kohmoto and Y. Oono,Phys. Lett. A 102:145 (1984).

    Article  Google Scholar 

  27. P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov,Sov. Phys. JETP 64:410 (1986).

    Google Scholar 

  28. J. Llibre and R. S. MacKay,Math. Proc. Camb. Phil. Soc. 112:539 (1992).

    Google Scholar 

  29. M. Golubitsky, I. Stewart, and D. C. Schaeffer,Singularities and Groups in Bifurcation Theory, Vol. II (Springer, New York, 1988).

    Google Scholar 

  30. J. J. Rotman,An Introduction to the Theory of Groups, 3rd. ed. (Allyn and Bacon, Boston, 1984).

    Google Scholar 

  31. M. R. Schroeder,Number Theory in Science and Communication, 2nd ed. (Springer, Berlin, 1990).

    Google Scholar 

  32. G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 4th ed. (Clarendon, Oxford, 1960).

    Google Scholar 

  33. J. Kollar and A. Sütő,Phys. Lett. A 117:203 (1986).

    Article  Google Scholar 

  34. V. G. Benza,Europhys. Lett. 8:321 (1989).

    Google Scholar 

  35. U. Grimm and M. Baake, Non-periodic Ising quantum chains and conformal invariance, to appear inJ. Stat. Phys. (March 1994).

  36. M. Casdagli,Commun. Math. Phys. 107:295 (1986).

    Article  Google Scholar 

  37. R. L. Devaney,Trans. Am. Math. Soc. 218:89 (1976).

    Google Scholar 

  38. M. B. Sevryuk,Reversible Systems (Springer, Berlin, 1986).

    Google Scholar 

  39. G. D. Birkhoff,Collected Mathematical Papers, Vols. 1 and 2, American Mathematical Society, Providence, Rhode Island, 1950).

    Google Scholar 

  40. J. S. W. Lamb,J. Phys. A 25:925 (1992).

    Google Scholar 

  41. J. S. W. Lamb and G. R. W. Quispel, Reversingk-symmetries in dynamical systems, Amsterdam preprint ITFA 93-16.

  42. M. Baake and J. A. G. Roberts, Symmetries and reversing symmetries of trace maps, inProceedings 3rd International Wigner Symposium (Oxford, 1993), L. L. Boyle and A. I. Solomon, eds., to appear; M. Baake and J. A. G. Roberts, in preparation.

  43. J. Bellissard, B. Iochum, E. Scoppola, and D. Testard,Commun. Math. Phys. 125:527 (1989); A. Sütő,J. Stat. Phys. 56:525 (1989).

    Article  Google Scholar 

  44. R. S. MacKay,Phys. Lett. A 106:99 (1984).

    Article  Google Scholar 

  45. K. R. Meyer,Trans. Am. Math. Soc. 149:95 (1970).

    Google Scholar 

  46. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  47. J. Nielsen,Math. Ann. 78:385 (1918).

    Article  MathSciNet  Google Scholar 

  48. M. Holzer,Phys. Rev. B 38:1709 (1988).

    Article  Google Scholar 

  49. M. Baake, D. Joseph, and P. Kramer,Phys. Lett. A 168:199 (1992); D. Joseph, M. Baake, and P. Kramer,J. Non-Cryst. Solids 153&154:394 (1992).

    Article  Google Scholar 

  50. W. P. Thurston,Bull. AMS 19:417 (1988).

    Google Scholar 

  51. J. Peyrière, Wen Zhi-Ying, and Wen Zhi-Xiong,L'Enseignement Math. 39:153 (1993); Algebraic properties of trace mappings associated with substitutive sequences,Mod. Math. (China), to appear.

    Google Scholar 

  52. H. S. M. Coxeter and W. O. J. Moser,Generators and Relations for Discrete Groups, 2nd ed. (Springer, Berlin, 1965).

    Google Scholar 

  53. H. Davenport,The Higher Arithmetic (Dover, New York, 1983).

    Google Scholar 

  54. K. Iguchi,Phys. Rev. B 43:5915 5919 (1991).

    Article  Google Scholar 

  55. E. Ghys and V. Sergiescu,Topology 19:179 (1980).

    Article  Google Scholar 

  56. J. Peyrière, Wen Zhi-Xiong, and Wen Zhi-Yiung, inNonlinear Problems in Engineering and Science, Shutie Xiao and Xian-Cheng Hu, eds. (Science Press, Beijing 1992).

    Google Scholar 

  57. P. Pleasants, private communication (1992).

  58. J. A. G. Roberts and H. W. Capel,Phys. Lett. A. 162:243 (1992); and in preparation.

    Article  Google Scholar 

  59. Y. Avishai and D. Berend,J. Phys. A 26:2437 (1993); Y. Avishai, D. Berend, and D. Glaubman, Minimum-dimension trace maps for substitution sequences, preprint, Beer-Sheva (1993).

    Google Scholar 

  60. D. Berend, private communication (1993).

  61. S. Lang,Algebra, 2nd ed. (Addison-Wesley, Menlo Park, California, 1984).

    Google Scholar 

  62. M. Kohmoto,Int. J. Mod. Phys. B 1:31 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, J.A.G., Baake, M. Trace maps as 3D reversible dynamical systems with an invariant. J Stat Phys 74, 829–888 (1994). https://doi.org/10.1007/BF02188581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188581

Key Words

Navigation