Skip to main content
Log in

Kinetic lattice models of disorder

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a class of stochastic Ising (or interacting particle) systems that exhibit a spatial distribution of impurities that change with time. It may model, for instance, steady nonequilibrium conditions of the kind that may be induced by diffusion in some disordered materials. Different assumptions for the degree of coupling between the spin and the impurity configurations are considered. Two interesting well-defined limits for impurities that behave autonomously are (i) the standard (i.e., quenched) bond-diluted, random-field, random-exchange, and spin-glass Ising models, and (ii) kinetic variations of these standard cases in which conflicting kinetics simulate fast and random diffusion of impurities. A generalization of the Mattis model with disorder that describes a crossover from the equilibrium case (i) to the nonequilibrium case (ii) and the microscopic structure of a generalized heat bath are explicitly worked out as specific realizations of our class of models. We sketch a simple classification of transition rates for the time evolution of the spin configuration based on the critical behavior that is exhibited by the models in case (ii). The latter are shown to have an exact solution for any lattice dimension for some special choice of rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Thompson,Mathematical Statistical Mechanics (Princeton University Press, Princeton, New Jersey, 1972), and references therein.

    Google Scholar 

  2. R. J. Glauber,J. Math. Phys. 4:294 (1963).

    Article  Google Scholar 

  3. K. Kawasaki,Phys. Rev. 145:224 (1966); see also K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol.4, C. Domb and M. S. Green eds. (Academic Press, London, 1972).

    Article  Google Scholar 

  4. N. G. van Kampen,Srochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  5. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  6. J. Ziman,Models of Disorder (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  7. G. Grinstein, inFundamental Problems in Statistical Mechanics VI, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1985).

    Google Scholar 

  8. M. Mézard, G. Parisi, and M. A. Virasoro,Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  9. D. Amit, H. Gutfreund, and H. Sompolinsky,Ann. Phys. (N.Y.)173:30 (1987), and references therein.

    Article  Google Scholar 

  10. S. F. Edwards and P. W. Anderson,J. Phys. F 5:965 (1975);6:1927 (1976); see also D. Sherrington and S. Kirkpatrick,Phys. Rev. Lett. 35:1972 (1975).

    Article  Google Scholar 

  11. R. Leibman,Statistical Mechanics of Periodic Frustrated Ising Systems (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  12. G. Parisi,Phys. Rep. 67:97 (1980).

    Article  Google Scholar 

  13. K. Binder and A. P. Young,Rev. Mod. Phys. 58:801 (1986).

    Article  Google Scholar 

  14. Y. Imry and S. Ma,Phys. Rev. Lett. 35:1399 (1975); J. Z. Imbrie,Phys. Rev. Lett. 53:1747 (1984); D. S. Fisher,Phys. Rev. Lett. 56:419 (1986); J. Bricmont and A. Kupiainen,Phys. Rev. Lett. 59:1829 (1987).

    Article  Google Scholar 

  15. R. Pynn and A. Skjeltorp, eds.,Time Dependent Effects in Disordered Systems (Plenum Press, New York, 1987).

    Google Scholar 

  16. J. O. Andersson, J. Mattsson, and P. Svedlindh,Phys. Rev. B 46:8297 (1992).

    Article  Google Scholar 

  17. M. F. Thorpe and D. Beeman,Phys. Rev. B 14:188 (1976).

    Article  Google Scholar 

  18. P. L. Garrido and J. Marro,Europhys. Lett. 15:375 (1991).

    Google Scholar 

  19. J. J. Alonso and J. Marro,Phys. Rev. B 45:10408 (1992).

    Article  Google Scholar 

  20. P. L. Garrido and J. Marro,J. Phys. A: Math. Gen. 25:1453 (1992).

    Article  Google Scholar 

  21. A. I. López-Lacomba and J. Marro,Phys. Rev. B 46:8244 (1992).

    Article  Google Scholar 

  22. J. J. Alonso and J. Marro,J. Phys.: Cond. Matter 4:1 (1992).

    Article  Google Scholar 

  23. P. L. Garrido and J. Marro, inArtificial Neural Networks, A. Prieto ed. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  24. D. C. Mattis,Phys. Lett. A 56:421 (1976).

    Article  Google Scholar 

  25. J. T. Cushing,Applied Analytical Mathematics for Physical Scientists (Wiley, New York, 1975), Chapter 5.

    Google Scholar 

  26. J. M. González-Miranda, A. Labarta, M. Puma, J. F. Fernández, P. L. Garrido, and J. Marro,Phys. Rev. E, in press.

  27. P. L. Garrido and J. Marro,Phys. Rev. Lett. 62:1929 (1989).

    Article  Google Scholar 

  28. A. I. López-Lacomba, P. L. Garrido, and J. Marro,J. Phys. A: Math. Gen. 23:3809 (1990).

    Article  Google Scholar 

  29. J. Marro, J. F. Fernández, J. M. González-Miranda, and M. Puma, private communication.

  30. A. Aharony,Phys. Rev. B 18:3318 (1978).

    Article  Google Scholar 

  31. R. Bruinsma,Phys. Rev. B 30:289 (1984).

    Article  Google Scholar 

  32. T. Yokota,Phys. Rev. B 38:11669 (1988).

    Article  Google Scholar 

  33. G. Grinstein, C. Jayaprakash, and Y. He,Phys. Rev. Lett. 55:2527 (1985).

    Article  Google Scholar 

  34. M. A. Muñoz and P. L. Garrido, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, P.L., Marro, J. Kinetic lattice models of disorder. J Stat Phys 74, 663–686 (1994). https://doi.org/10.1007/BF02188575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188575

Key Words

Navigation