Skip to main content
Log in

Statistical model of the habit and arrangement of mineral crystals in the collagen of bone

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Randomly colored space tesselations are considered as models for the mineral/organic structure of bone. First, it is shown that the structure function for such models is always proportional to the average form factor of the individual tiles and hence independent of the mineral density in the sample. Then the structure function is calculated for three such models: for model I, based on a hexagonal, and model 2, on a Poisson-Voronoi tesselation of the plane and for model 3, based on a random tesselation of the line. These results are compared to experimental structure functions measured by small-angle scattering and excellent agreement is obtained between model 2 and the bone from mice and rats, as well as between model 3 and calcified turkey leg tendon. Divergent conclusions following recent experiments by small-angle x-ray scattering and by electron microscopy are discussed in the light of these structural models and an explanation is proposed which might remove the discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Glimcher, InHandbook of Physiology 7: Endocrinology,B2:25, R. O. Greep and E. B. Astwood, eds. (American Physiological Society, Washington, D. C., 1976).

    Google Scholar 

  2. A. S. Posner,Bone Mineral Res. 5:65 (1987).

    Google Scholar 

  3. E. Bonucci,Calcification in Biological Systems (CRC Press, Boca Raton, Florida, 1992).

    Google Scholar 

  4. W. J. Landis,J. Ultrastruct. Mol. Struct. Res. 94:217 (1986).

    Article  Google Scholar 

  5. A. L. Arsenault,Bone Mineral 6:165 (1989).

    Article  Google Scholar 

  6. W. Traub, T. Arad, and S. Weiner,Proc. Natl. Acad. Sci. USA 86:9822 (1989).

    Google Scholar 

  7. S. Weiner and W. Traub,Connective Tiss. Res. 21:259 (1989).

    Google Scholar 

  8. D. D. Lee and M. J. Glimcher,J. Mol. Biol. 217:487 (1991).

    Article  Google Scholar 

  9. W. J. Landis, M. J. Song, A. Leith, L. McEwen, and B.F. McEwen,J. Struct. Biol. 110:39 (1993).

    Article  Google Scholar 

  10. M. D. Grynpas, L. C. Bonar, and M. J. Glimcher,J. Materials Sci. 19:723 (1984).

    Article  Google Scholar 

  11. R. Legros, N. Balmel, and G. Bonel,Calcif. Tiss. Int. 41:137 (1987).

    Google Scholar 

  12. A. L. Arsenault and M. D. Grynpas,Calcif. Tiss. Int. 43:219 (1988).

    Google Scholar 

  13. P. Fratzl, N. Fratzl-Zelman, K. Klaushofer, G. Vogl, and K. Koller,Calcif. Tiss. Int. 48:407 (1991).

    Google Scholar 

  14. P. Fratzl, M. Groschner, G. Vogl, H. Plenk, Jr., J. Eschberger, N. Fratzl-Zelman, K. Koller, and K. Klaushofer,J. Bone Mineral Res. 7:329 (1992).

    Google Scholar 

  15. P. Fratzl, N. Fratzl-Zelman, and K. Klaushofer,Biophys. J. 64:260 (1993).

    Google Scholar 

  16. S. W. White, D. J. S. Hulmes, A. Miller, and P. A. Timmins,Nature 266:421 (1977).

    Article  Google Scholar 

  17. L. C. Bonar, S. Lees, and H. A. Mook,J. Mol. Biol. 181:265 (1985).

    Article  Google Scholar 

  18. A. L. Boskey, N. Pleshko, S. B. Doty, and R. Mendelsohn,Cells Materials 2: 209 (1992).

    Google Scholar 

  19. S.Lees and E. A. Page,Connective Tiss. Res. 28:263 (1992).

    Google Scholar 

  20. S. Lees and K. Prostak,Connective Tiss. Res. 18:41 (1988).

    Google Scholar 

  21. H. J. Hoehling, R. H. Barckhaus, E. R. Krefting, J. Althoff, and P. Quint, InUltrastructure of Skeletal Tissues, E. Bonucci and P. M. Motta, eds. (Kluwer, 1990), p. 41.

  22. A. Guinier and G. Fournet,Small-Angle Scattering of X-Rays (Wiley, New York, 1955).

    Google Scholar 

  23. G. Porod,Kolloid Z. 124:83 (1951);125:51 (1952).

    Article  Google Scholar 

  24. P. Fratzl,Acta Phys. Polon. A 82:121 (1992).

    Google Scholar 

  25. J. D. Gunton, M. San Miguel, and P. S. Sahni, InPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983).

    Google Scholar 

  26. K. Binder, InMaterials Science and Technology, P. Haasen, ed. (VCH, Weinheim, 1991). Vol. 5, Chapter 7, p. 405.

    Google Scholar 

  27. P. Fratzl and J. L. Lebowitz,Acta Metall. 37:3245 (1989).

    Article  Google Scholar 

  28. P. Fratzl, J. L. Lebowitz, O. Penrose, and J. Amar,Phys. Rev. B 44:4794 (1991).

    Article  Google Scholar 

  29. P. Fratzl,J. Appl. Cryst. 24:593 (1991).

    Article  Google Scholar 

  30. F. Langmayr, P. Fratzl, and G. Vogl,Acta Metall. Mater. 40:3381 (1992).

    Article  Google Scholar 

  31. D. Stoyan, W. S. Kendall, and J. Mecke,Stochastic Geometry and Its Applications (Wiley, New York, 1987), Chapter 10.

    Google Scholar 

  32. E. W. Kaler and S. Prager,J. Colloid Interface Sci. 86:359 (1982).

    Article  Google Scholar 

  33. H. Brumberger and J. Goodisman,J. Appl. Cryst. 16:83 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Oliver Penrose on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratzl, P. Statistical model of the habit and arrangement of mineral crystals in the collagen of bone. J Stat Phys 77, 125–143 (1994). https://doi.org/10.1007/BF02186835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186835

Key Words

Navigation