Skip to main content
Log in

Study of the structural order of native starch granules using combined FTIR and XRD analysis

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The structural order of native starch granules with different crystalline patterns was analyzed by combined X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and the results were compared to that of X-ray diffraction (XRD). The FTIR spectra of 13 starch samples were evaluated by principal component analysis (PCA). The main differences among the polymorphs were observed in the intensity of two regions: the OH vibration region, 3650–3000 cm−1, and the region of major adsorption bands, 1200–800 cm−1. The variation in these regions showed that two different groups can be distinguished, one for B-type starches and one for A- and C-type starches. A-type starches exhibited a well-resolved band at 1022 cm−1, suggesting that A-type starch granules have a greater amount of ordered short-range double helices than B-type starches. The intensity and shape of the OH band were different for the three starches and were associated with different local molecular environments of the two water populations of the starch granule. The PCA analysis for X-ray diffraction patterns showed a clear segregation between A- and B-type starches, defined by three typical diffraction peaks at 2θ = 15.0°, 18.1° and 23.1° for A-type starches. There was no correlation in the crystallinity degree obtained by the FTIR and XRD methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blazek J, Gilbert EP (2011) Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: a review. Carbohydr Polym 85(2):281–293. https://doi.org/10.1016/j.carbpol.2011.02.041

    Article  CAS  Google Scholar 

  2. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M (2005) Starches from different botanical sources I: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr Polym 60(4):529–538. https://doi.org/10.1016/j.carbpol.2005.03.004

    Article  CAS  Google Scholar 

  3. Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch - Stärke 62(8):389–420. https://doi.org/10.1002/star.201000013

    Article  CAS  Google Scholar 

  4. Gérard C, Planchot V, Colonna P, Bertoft E (2000) Relationship between branching density and crystalline structure of A- and B-type maize mutant starches. Carbohydr Res 326(2):130–144. https://doi.org/10.1016/S0008-6215(00)00025-2

    Article  PubMed  Google Scholar 

  5. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36(4):277–284. https://doi.org/10.1016/S0144-8617(98)00007-1

    Article  CAS  Google Scholar 

  6. Brückner S (2000) Estimation of the background in powder diffraction patterns through a robust smoothing procedure. J Appl Crystallogr 33(3 Part 2):977–979. https://doi.org/10.1107/S0021889800003617

    Article  Google Scholar 

  7. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78(3):543–548. https://doi.org/10.1016/j.carbpol.2009.05.018

    Article  CAS  Google Scholar 

  8. Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89(9):761–768. https://doi.org/10.1002/bip.21005

    Article  CAS  PubMed  Google Scholar 

  9. van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279(0):201–214. https://doi.org/10.1016/0008-6215(95)00270-7

    Article  Google Scholar 

  10. Cael JJ, Koenig JL, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V-amylose. Biopolymers 14(9):1885–1903. https://doi.org/10.1002/bip.1975.360140909

    Article  CAS  Google Scholar 

  11. van Soest JJG, De Wit D, Tournois H, Vliegenthart JFG (1994) Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy. Starch - Stärke 46(12):453–457. https://doi.org/10.1002/star.19940461202

    Article  Google Scholar 

  12. Wilson RH, Belton PS (1988) A Fourier-transform infrared study of wheat starch gels. Carbohydr Res 180(2):339–344. https://doi.org/10.1016/0008-6215(88)80090-9

    Article  CAS  Google Scholar 

  13. Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol 31(1–3):79–85. https://doi.org/10.1016/S0141-8130(02)00067-3

    Article  CAS  PubMed  Google Scholar 

  14. Warren FJ, Gidley MJ, Flanagan BM (2016) Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr Polym 139:35–42. https://doi.org/10.1016/j.carbpol.2015.11.066

    Article  CAS  PubMed  Google Scholar 

  15. Zobel H, Young S, Rocca L (1988) Starch gelatinization: an X-ray diffraction study. Cereal Chem 65(6):443–446

    CAS  Google Scholar 

  16. Srichuwong S, Isono N, Jiang HX, Mishima T, Hisamatsu M (2012) Freeze-thaw stability of starches from different botanical sources: correlation with structural features. Carbohydr Polym 87(2):1275–1279. https://doi.org/10.1016/j.carbpol.2011.09.004

    Article  CAS  Google Scholar 

  17. Castaño J, Rodríguez-Llamazares S, Sepúlveda E, Giraldo D, Bouza R, Pozo C (2017) Morphological and structural changes of starch during processing by melt blending. Starch - Stärke 69(9–10):1600247. https://doi.org/10.1002/star.201600247

    Article  CAS  Google Scholar 

  18. Castano J, Rodriguez-Llamazares S, Contreras K, Carrasco C, Pozo C, Bouza R, Franco CM, Giraldo D (2014) Horse chestnut (Aesculus hippocastanum L.) starch: basic physico-chemical characteristics and use as thermoplastic material. Carbohydr Polym 112:677–685. https://doi.org/10.1016/j.carbpol.2014.06.046

    Article  CAS  PubMed  Google Scholar 

  19. Castano J, Bouza R, Rodriguez-Llamazares S, Carrasco C, Vinicius RVB (2012) Processing and characterization of starch-based materials from pehuen seeds (Araucaria araucana (Mol) K. Koch). Carbohydr Polym 88(1):299–307. https://doi.org/10.1016/j.carbpol.2011.12.008

    Article  CAS  Google Scholar 

  20. Castano J, Rodriguez-Llamazares S, Bouza R, Franco CML (2016) Chemical composition and thermal properties of Chilean Araucaria araucana starch. Starch-Starke 68(1–2):100–105. https://doi.org/10.1002/star.201500148

    Article  CAS  Google Scholar 

  21. Arguedas Deza FY (2008) Caracterización del almidón de colocasia esculenta l. schott proveniente de los departamentos de Cajamarca y San Martín. Bachelor thesis, Universidad Nacional de Trujillo

  22. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/, Vienna, Austria

  23. Pozo C, Rodríguez-Llamazares S (2016) spftir: pre-processing and analysis of mid-infrared spectral region. R package version 0.1.0. https://CRAN.R-project.org/package=spftir

  24. Sun Y, Wu Z, Hu B, Wang W, Ye H, Sun Y, Wang X, Zeng X (2014) A new method for determining the relative crystallinity of chickpea starch by Fourier-transform infrared spectroscopy. Carbohydr Polym 108:153–158. https://doi.org/10.1016/j.carbpol.2014.02.093

    Article  CAS  PubMed  Google Scholar 

  25. Pozo C, Rodríguez-Llamazares S (2016) cryst: calculate the relative crystallinity of starch by XRD and FTIR. R package version 0.1.0. https://CRAN.R-project.org/package=cryst

  26. Otto M (2016) Chemometrics: statistics and computer application in analytical chemistry. Wiley, Hoboken

    Book  Google Scholar 

  27. Zhang Y, Guo Q, Feng N, J-r W, S-j W, He Z-h (2016) Characterization of A- and B-type starch granules in Chinese wheat cultivars. J Integr Agric 15(10):2203–2214. https://doi.org/10.1016/S2095-3119(15)61305-3

    Article  CAS  Google Scholar 

  28. Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym 47(3):245–252. https://doi.org/10.1016/S0144-8617(01)00187-4

    Article  CAS  Google Scholar 

  29. Nzenguet AM, Aqlil M, Essamlali Y, Amadine O, Snik A, Larzek M, Zahouily M (2018) Novel bionanocomposite films based on graphene oxide filled starch/polyacrylamide polymer blend: structural, mechanical and water barrier properties. J Polym Res 25(4). https://doi.org/10.1007/s10965-018-1469-7

  30. Cisek R, Tokarz D, Kontenis L, Barzda V, Steup M (2018) Polarimetric second harmonic generation microscopy: an analytical tool for starch bioengineering. Starch - Stärke 70(1–2):1700031. https://doi.org/10.1002/star.201700031

    Article  CAS  Google Scholar 

  31. Kong L, Lee C, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118(7):1775–1783. https://doi.org/10.1021/jp411130n

    Article  CAS  PubMed  Google Scholar 

  32. Imberty A, Perez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27(8):1205–1221. https://doi.org/10.1002/bip.360270803

    Article  CAS  Google Scholar 

  33. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112. https://doi.org/10.1016/S0141-8130(98)00040-3

    Article  PubMed  Google Scholar 

  34. Yu H, Cheng L, Yin J, Yan S, Liu K, Zhang F, Xu B, Li L (2013) Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome. Food Sci Nutr 1(4):273–283. https://doi.org/10.1002/fsn3.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madu SJ, Azubuike CP, Okubanjo O, Mohammed A, Emeje OM (2018) Physicochemical and disintegrant properties of sodium Carboxymethyl starch derived from Borassus aethiopum (Arecaceae) shoot. J Polym Res 25(8). https://doi.org/10.1007/s10965-018-1565-8

Download references

Acknowledgements

This work was supported by projects Fondecyt N°3150630, CIPA, CONICYT Regional, GORE BIO BIO, R17A10003, CONICYT PIA/APOYO CCTE AFB170007. We also thank Ms. Francisca Saavedra for helping in sample preparation and testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio Pozo or Saddys Rodríguez-Llamazares.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo, C., Rodríguez-Llamazares, S., Bouza, R. et al. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J Polym Res 25, 266 (2018). https://doi.org/10.1007/s10965-018-1651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1651-y

Keywords

Navigation