Skip to main content
Log in

A goldstone mode in the Kawasaki-Ising model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The hydrodynamic regime of superfluids is dominated by a Goldstone mode corresponding to a spontaneously brokenU(1) symmetry. In this article we map the Kawasaki-Ising model for a classical lattice gas into a quantum model for a superfluid and establish a connection between the normal density fluctuations of the first and the Goldstone mode of the second. The fact that the quantum model we obtain describes a superfluid derives from an inequality by Penrose and Onsager which gives a lower bound to the Bose-Einstein condensate density. Mathematically, the Goldstone mode can be described by means of a “quantum” extension of the local algebra of the Ising model. The classification of its irreducible representations requires an additionalU(1) phase factor and the correspondingU(1) gauge symmetry is spontaneously broken for all finite values of the temperature and of the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  2. A. De Masi and E. Presutti,Mathematical Methods for Hydrodynamic Limits (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  3. S. L. Lu and H. T. Yau, Spectral gap and logarithmic Sobolev inequality of Kawasaki and Glauber dynamics, preprint (1993).

  4. O. Penrose and L. Onsager, On the quantum mechanics of helium II,Phys. Rev. 104:576 (1956).

    Article  Google Scholar 

  5. L. Reatto, Bose-Einstein condensation for a class of wavefunctions,Phys. Rev. 183:334 (1969).

    Article  Google Scholar 

  6. D. Ruelle, Classical statistical mechanics of a system of particles,Helv. Phys. Acta 36:183 (1963).

    Google Scholar 

  7. K. Symanzik, Euclidean proof of the Goldstone Theorem,Commun. Math. Phys. 6:228 (1967).

    Article  Google Scholar 

  8. C. Albanese and M. Isopi, Long time asymptotics of infinite particle systems, preprint (1994).

  9. R. P. Feynman,Phys. Rev. 91:1291 (1953).

    Article  Google Scholar 

  10. K. Binder,Monte Carlo Methods in Statistical Physics, (Berlin, Springer, 1979).

    Google Scholar 

  11. P. W. Anderson,Basic Notions of Condensed Matter Physics (Benjamin-Cummings, London, 1984).

    Google Scholar 

  12. D. J. Amit,Field Theory, the Renormalization Group and Critical Phenomena (McGraw-Hill, 1978).

  13. O. A. McBrian and T. Spencer,Commun. Math. Phys. 53:299 (1977).

    Article  Google Scholar 

  14. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, New York, 1975).

    Google Scholar 

  15. P. Nozières and D. Pines,The Theory of Quantum Liquids, Vol. 2 (Benjamin, New York, 1966–1990).

    Google Scholar 

  16. J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz,Helv. Phys. Acta 66 (1993).

  17. J. Goldstone,Nuovo Cimento 19:154 (1961).

    Google Scholar 

  18. G. Parisi and N. Sourlas,Nucl. Phys. B 206:321 (1982).

    Article  Google Scholar 

  19. J. R. Schrieffer,Theory of Superconductivity (Benjamin, New York, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albanese, C. A goldstone mode in the Kawasaki-Ising model. J Stat Phys 77, 77–87 (1994). https://doi.org/10.1007/BF02186833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186833

Key Words

Navigation