Skip to main content
Log in

Collective modes of p-wave superfluid Fermi gases in BEC phase

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The low-energy modes of a superfluid atomic Fermi gas at zero temperature are investigated. The Bose-Einstein-condensate (BEC) side of the superfluid phase is studied in detail. The atoms are assumed to be in only one internal state, so that for a sufficiently diluted gas the pairing of fermions can be considered effective in the l = 1 channel only. In agreement with previous works on p-wave superfluidity in Fermi systems, it is found that the p x + i p y phase represents the lowest energy state in both the Bardeen-Cooper-Schrieffer (BCS) and BEC sides. Our calculations show that at low energy three branches of collective modes can emerge, with different species of dispersion relations: a phonon-like mode, a single-particle-like mode and a gapped mode. A comparison with the Bogoliubov excitations of the corresponding spinor Bose condensate is made. They reproduce the dispersion relations of the excitation modes of the p-wave superfluid Fermi gas to a high accuracy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, P. Morel, Phys. Rev. 123, 1911 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  2. C.A. Regal et al., Phys. Rev. Lett. 90, 053201 (2003)

    Article  ADS  Google Scholar 

  3. C. Ticknor et al., Phys. Rev. A 69, 042712 (2004)

    Article  ADS  Google Scholar 

  4. J. Zhang et al., Phys. Rev. A 70, 030702 (2004)

    Article  ADS  Google Scholar 

  5. C.H. Schunck et al., Phys. Rev. A 71, 045601 (2005)

    Article  ADS  Google Scholar 

  6. J.R. Engelbrecht, M. Randeria, C.A.R. Sá de Melo, Phys. Rev. B 55, 15153 (1997)

    Article  ADS  Google Scholar 

  7. V. Gurarie, L. Radzihovsky, A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005)

    Article  ADS  Google Scholar 

  8. V. Gurarie, L. Radzihovsky, Ann. Phys. 322, 2 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Y. Ohashi, Phys. Rev. Lett. 94, 050403 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. Tin-Lun Ho, R.D. Diener, Phys. Rev. Lett. 94, 090402 (2005)

    Article  ADS  Google Scholar 

  11. C.-H. Cheng, S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005)

    Article  ADS  Google Scholar 

  12. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. Lett. 96, 040402 (2006)

    Article  ADS  Google Scholar 

  13. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. A 74, 013608 (2006)

    Article  ADS  Google Scholar 

  14. A. Bulgac, M.M. Forbes, A. Schwenk, Phys. Rev. Lett. 97, 020402 (2006)

    Article  ADS  Google Scholar 

  15. K.R. Patton, D.E. Sheehy, Phys. Rev. A 83, 051607 (2011)

    Article  ADS  Google Scholar 

  16. D. Inotani, M. Sigrist, Y. Ohashi, J. Low Temp. Phys. 171, 376 (2013)

    Article  ADS  Google Scholar 

  17. G. Cao, L. He, P. Zhuang, Phys. Rev. A 87, 013613 (2013)

    Article  ADS  Google Scholar 

  18. R. Liao, F. Popescu, K. Quader, Phys. Rev. B 88, 134507 (2013)

    Article  ADS  Google Scholar 

  19. F. Matera, Phys. Rev. A 68, 043624 (2003)

    Article  ADS  Google Scholar 

  20. F. Matera, A. Dellafiore, Eur. Phys. J. D 65, 55 (2011), and references therein

    Article  Google Scholar 

  21. M.G. Lingham et al., Phys. Rev. Lett. 112, 100404 (2014)

    Article  ADS  Google Scholar 

  22. A. Altland, B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2007)

  23. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

  24. A.I. Larkin, Yu.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. J. Exp. Phys. Theor. 20, 762 (1965)]

    Google Scholar 

  25. P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  26. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 3rd edn. (Clarendon Press, Oxford, 1965)

  27. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1994)

  28. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2004)

  29. A.J. Legget, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford University Press, Oxford, 2006)

  30. Y. Kawaguchi, M. Ueda, Phys. Rep. 520, 253 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  31. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)

    Article  ADS  Google Scholar 

  32. S. Uchino, M. Kobayashy, M. Ueda, Phys. Rev. A 81, 063632 (2010)

    Article  ADS  Google Scholar 

  33. H.B. Nielsen, S. Chadha, Nucl. Phys. B 105, 445 (1976)

    Article  ADS  Google Scholar 

  34. A. Bulgac, S. Yoon, Phys. Rev. A 79, 053625 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Matera or Matthias F. Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matera, F., Wagner, M. Collective modes of p-wave superfluid Fermi gases in BEC phase. Eur. Phys. J. D 69, 158 (2015). https://doi.org/10.1140/epjd/e2015-60131-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60131-7

Keywords

Navigation