Skip to main content
Log in

Finite-size scaling for correlations of quantum spin chains at criticality

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the finite-size scaling behavior of two-point correlation functions of translationally invariant many-body systems at criticality. We propose an efficient method for calculating the two-point correlation functions in the thermodynamic limit from numerical data of finite systems. Our method is most effective when applied to a two-dimensional (classical) system which possesses a conformal invariance. By using this method with numerical data obtained from exact diagonalizations and Monte Carlo simulations, we study the spin-spin correlations of the quantum spin-1/2 and-3/2 antifierromagnetic chains. In particular, the logarithmic corrections to power-law decay of the correlation of the spin-1/2 isotropic Heisenberg antiferromagnetic chain are studied thoroughly. We clarify the cause of the discrepancy in previous calculations for the logarithmic corrections. Our result strongly supports the field-theoretic prediction based on the mappings to the Wess-Zumino-Witten nonlinear σ-model or the sine-Gordon model. We also treat logarithmic corrections and crossover phenomena in the spin-spin correlation of the spin-3/2 isotropic Heisenberg antiferromagnetic chain. Our results are consistent with the Affleck-Haldane prediction that the correlation of the spin-3/2 chain exhibits a crossover to the same asymptotic behavior as in the spin-1/2 chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Fisher, InCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1972).

    Google Scholar 

  2. M. E. Fisher and M. N. Barber,Phys. Rev. Lett. 28:1516 (1972).

    Google Scholar 

  3. M. N. Barber, InPhase Transition and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).

    Google Scholar 

  4. J. L. Cardy, ed.,Finite-Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  5. V. Privman, ed.,Finite-Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  6. K. Binder, InComputational Methods in Field Theory, (Springer-Verlag, Berlin, 1992), p. 59.

    Google Scholar 

  7. P. Christe, and M. Henkel,Introduction to Conformal Invariance and Its Applications to Critical Phenomena (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  8. M. Lüscher, P. Weisz, and U. Wolff,Nucl. Phys. B 359:221 (1991); J.-K. Kim.Phys. Rev. Lett. 70:1735 (1993);Nucl. Phys. B. (Proc. Suppl.) 34:702 (1994);Phys. Rev. D 50:4663 (1994);Europhys. Lett. 28:211 (1994); S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal,Phys. Rev. Lett. 74:2969 (1995).

    Google Scholar 

  9. R. Botet, R. Jullien, and M. Kolb,Phys. Rev. B 28:3914 (1983).

    Google Scholar 

  10. T. A. Kaplan, P. Horsch, and J. Borysowicz,Phys. Rev. B 35:1877 (1987).

    Google Scholar 

  11. A. W. Sandvik and D. J. Scalapino,Phys. Rev. B 47:12333 (1993).

    Google Scholar 

  12. K. Kubo, T. A. Kaplan, and J. R. Borysowicz,Phys. Rev. B 16:11550 (1988).

    Google Scholar 

  13. J. R. Borysowicz, A. Moreo, T. A. Kaplan, and K. Kubo,Nucl. Phys. B 300:301 (1988).

    Google Scholar 

  14. S. Liang,Phys. Rev. Lett. 13:1597 (1990).

    Google Scholar 

  15. H. Q. Lin and D. K. Campbell,J. Appl. Phys. 69:5947 (1991).

    Google Scholar 

  16. N. Mizukoshi and T. Koma, Annual Meeting of the Physical Society of Japan, Sendai, Japan (March 1993).

  17. T. Koma, InQuantum Monte Carlo Methods in Condensed Matter Physics, M. Suzuki, ed. (World Scientific, Singapore, 1993), p. 131.

    Google Scholar 

  18. I. Affleck, InFields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990), p. 563.

    Google Scholar 

  19. I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman,J. Phys. A 22:511 (1989).

    Google Scholar 

  20. R. R. P. Singh, M. E. Fisher, and R. Shankar,Phys. Rev. B 39:2562 (1989).

    Google Scholar 

  21. T. Giamarchi and H. J. Shulz,Phys. Rev. B 39:4620 (1989).

    Google Scholar 

  22. K. Nomura,Phys. Rev. B. 48:16814 (1993).

    Google Scholar 

  23. I. Affleck and F. D. M. Haldane,Phys. Rev. B. 36:5291 (1987).

    Google Scholar 

  24. C. Itoi and H. Mukaida,J. Phys. A 27:4695 (1994).

    Google Scholar 

  25. H. De Raedt and A. Lagendijk,Phys. Rep. 127:233 (1985).

    Google Scholar 

  26. M. Suzuki,J. Stat. Phys. 43:833 (1986).

    Google Scholar 

  27. M. Suzuki, ed.,Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium (Springer, Berlin, 1987).

    Google Scholar 

  28. E. Brézin,J. Phys. France 43:15 (1982).

    Google Scholar 

  29. J. L. Cardy,J. Phys. A. 17:L385 (1984).

    Google Scholar 

  30. J. L. Cardy,Nucl. Phys. B 270:186 (1986).

    Google Scholar 

  31. J. L. Cardy, InPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  32. J. L. Cardy, InFields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990), p. 169.

    Google Scholar 

  33. A. Luther and I. Peschel,Phys. Rev. B 12:3908 (1975).

    Google Scholar 

  34. S. Takada and K. Kubo,J. Phys. Soc. Jpn. 55:1671 (1986); S. Takada, InQuantum Monte Carlo Methods, M. Suzuki, ed. (Springer, Berlin, 1987), p. 86.

    Google Scholar 

  35. K. Kubo, InQuantum Monte Carlo Methods in Condensed Matter Physics, M. Suzuki, ed. (World Scientific, Singapore, 1993), p. 113.

    Google Scholar 

  36. I. Affleck and J. C. Bonner,Phys. Rev. B 42:954 (1990).

    Google Scholar 

  37. F. D. M. Haldane,Bull. Am. Phys. Soc. 27:181 (1982);Phys. Lett. A. 93:464 (1983);Phys. Rev. Lett. 50:1153 (1983).

    Google Scholar 

  38. H. J. Schulz,Phys. Rev. B 34:6372 (1986).

    Google Scholar 

  39. A. Moreo,Phys. Rev. B 35:8562 (1987).

    Google Scholar 

  40. T. Ziman and H. J. Schulz,Phys. Rev. Lett. 59:140 (1987).

    Google Scholar 

  41. A. Moreo,Phys. Rev. B 36:8582 (1987).

    Google Scholar 

  42. K. Kubo, K. Saitoh, and S. Takada,J. Phys. Soc. Jpn. 57:1601 (1988).

    Google Scholar 

  43. H. Kadowaki, K. Ubukoshi, K. Hirakawa, D. P. Belanger, H. Yoshizawa, and G. Shirane,J. Phys. Soc. Jpn. 55:2846 (1986).

    Google Scholar 

  44. S. Itoh, K. Kakurai, M. Arai, and Y. Endoh,J. Phys. Condens. Matter 5:6767 (1993); S. Itoh, Y. Endoh, K. Kakurai, and H. Tanaka,Phys. Rev. Lett. 74:2375 (1995).

    Google Scholar 

  45. J. Bonner and M. Fisher,Phys. Rev. 135:A640 (1964).

    Google Scholar 

  46. H. Betsuyaku and T. Yokota,Phys. Rev. B 33:6505 (1986).

    Google Scholar 

  47. A. M. Polyakov,JETP Lett. 12:381 (1970).

    Google Scholar 

  48. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,J. Stat. Phys. 34:763 (1984);Nucl. Phys. B 241:333 (1984).

    Google Scholar 

  49. C. Itzykson, H. Saleur and J.-B. Zuber, eds.Conformal Invariance and Applications to Statistical Mechanics (World Scientific, Singapore, 1988).

    Google Scholar 

  50. E. Brézin and J. Zinn-Justin, eds.Fields, Strings and Critical Phenomena (North-Holland, Amsterdam, 1990).

    Google Scholar 

  51. F. Woynarovich and H.-P. Eckle,J. Phys. A. 20:L97 (1987).

    Google Scholar 

  52. F. Woynarovich and H.-P. Eckle,J. Phys. A 20:L443 (1987).

    Google Scholar 

  53. C. J. Hamer, M. T. Batchelor, and M. N. Barber,J. Stat. Phys. 52:679 (1988).

    Google Scholar 

  54. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor,Ann.Phys. 182:280 (1988).

    Google Scholar 

  55. F. C. Alcaraz and M. J. Martins,J. Phys. A 21:L381 and 4397 (1988); L. V. Avdeev,J. Phys. A 23:L485 (1990).

    Google Scholar 

  56. K. Nomura and M. Yamada,Phys. Rev. B 43:8217 (1991).

    Google Scholar 

  57. H. Tsunetsugu,J. Phys. Soc. Jpn. 60:1460 (1991).

    Google Scholar 

  58. J. L. Cardy,J. Phys. A 19:L1093 (1986).

    Google Scholar 

  59. E. Lieb, T. Schultz, and D. Mattis,Ann. Phys. 16:407 (1961).

    Google Scholar 

  60. S. Katsura,Phys. Rev. 127:1508 (1962);129:2853 (1963).

    Google Scholar 

  61. T. T. Wu,Phys. Rev. 149:380 (1966).

    Google Scholar 

  62. B. M. McCoy,Phys. Rev. 173:531 (1968).

    Google Scholar 

  63. E. R. Gagliano, E. Dagotto, A. Moreo, and F. C. Alcaraz,Phys. Rev. B 34:1677 (1986);35:5297(E) (1987).

    Google Scholar 

  64. H. Q. Lin,Phys. Rev. B 42:6561 (1990).

    Google Scholar 

  65. A. Klümper, T. Wehner, and J. Zittartz,J.Phys. A 26:2815 (1993).

    Google Scholar 

  66. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor,Phys. Rev. Lett. 58:771 (1987).

    Google Scholar 

  67. N. M. Bogoliubov, A. G. Izergin, and N. Yu. Reshetikhin,J. Phys. A. 20:5361 (1987).

    Google Scholar 

  68. F. Woynarovich,Phys. Rev. Lett. 59:259, 1264(E) (1987).

    Google Scholar 

  69. H. Nishimori,Prog. Theor. Phys. 73:1577 (1985).

    Google Scholar 

  70. J. B. Parkinson and J. C. Bonner,Phys. Rev. B 32:4730 (1985).

    Google Scholar 

  71. I. Affleck,Nucl. Phys. B 265:409 (1986).

    Google Scholar 

  72. E. Witten,Commun. Math. Phys. 92:455 (1984).

    Google Scholar 

  73. V. G. Knizhnik and A. B. Zamolodchicov,Nucl. Phys. B 247:83 (1984).

    Google Scholar 

  74. M. Suzuki, ed.,Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, Singapore, 1993).

    Google Scholar 

  75. H. Betsuyaku, InQuantum Monte Carlo Methods in Equilibrium and Nonequilibrium, M. Suzuki, ed. (Springer, Berlin, 1987), p. 50.

    Google Scholar 

  76. B. Sutherland,J. Math. Phys. 11:3183 (1970).

    Google Scholar 

  77. E. H. Lieb and D. Mattis,J. Math. Phys. 3:749 (1962).

    Google Scholar 

  78. I. Affleck and E. H. Lieb,Lett. Math. Phys. 12:57 (1986).

    Google Scholar 

  79. T. Koma,J. Stat. Phys. 71:269 (1993).

    Google Scholar 

  80. B. S. Shastry,Phys. Rev. Lett. 56:1529,2453 (1986);J. Stat. Phys. 50:57 (1988); M. Wadati, E. Olmedilla, and Y. Akutsu,J. Phys. Soc. Jpn. 56:1340 (1987); E. Olmedilla, M. Wadati, and Y. Akutsu,J. Phys. Soc. Jpn. 56:2298 (1987).

    Google Scholar 

  81. D. J. Amit,Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984).

    Google Scholar 

  82. E. Fradkin,Field Theories of Condensed Matter Systems (Addison-Wesley, Reading, Massachusetts, 1991).

    Google Scholar 

  83. F. Woynarovich, H.-P. Eckle, and T. T. Truong,J. Phys. A 22:4027 (1989).

    Google Scholar 

  84. T. Koma,J. Phys. Soc. Jpn. 62:3402 (1993).

    Google Scholar 

  85. B.-D. Dörfel and B. Militzer,J. Phys. A 26:4875 (1993).

    Google Scholar 

  86. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).

  87. T. Koma,Prog. Theor. Phys. 78:1213 (1987):81:783 (1989).

    Google Scholar 

  88. M. Barma and B. S. Shastry,Phys. Rev. B 18:3351 (1978).

    Google Scholar 

  89. D. B. Abraham and A. L. Owczarek,Phys. Rev. Lett. 64:2595 (1990).

    Google Scholar 

  90. H. A. Bethe,Z. Phys. 71:205 (1931).

    Google Scholar 

  91. E. H. Lieb,Phys. Rev. 162:162 (1967);Phys. Rev. Lett. 18:1046 (1967);19:108 (1967); B. Sutherland,Phys. Rev. Lett. 19:103 (1967).

    Google Scholar 

  92. E. H. Lieb and F. Y. Wu, InPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, London, 1972).

    Google Scholar 

  93. R. Z. Bariev,Teoret. Mat. Fiz. 49:261 (1981) [Theor. Math. Phys. 49: 1021 (1982)].

    Google Scholar 

  94. B. Sutherland, InExactly Solvable Problems in Condensed Matter and Relativistic Field Theory, B. S. Shastry, S. S. Jha, and V. Singh, eds. (Springer, Berlin, 1985), p. 1.

    Google Scholar 

  95. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  96. S. Eggert, I. Affleck, and M. Takahashi,Phys. Rev. Lett. 73:332 (1994); P. D. Sacramento,J. Phys. Condens, Matter 6:L667 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koma, T., Mizukoshi, N. Finite-size scaling for correlations of quantum spin chains at criticality. J Stat Phys 83, 661–726 (1996). https://doi.org/10.1007/BF02183744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183744

Key Words

Navigation