Skip to main content
Log in

Application of the multicanonical multigrid Monte Carlo method to the two-dimensional φ4: Autocorrelations and interface tension: Autocorrelations and interface tension

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss the recently proposed multicanonical multigrid Monte Carlo method and apply it to the scalarφ 4 on a square lattice. To investigate the peformance of the new algorithm at the field-driven first-order phase transitions between the two ordered phases we carefully analyze the autocorrelations of the Monte Carlo process. Compared with standard mlticanonical simulations a real-time improvement of about one order of magnitude is established. The interface tension between the two ordered phases is extracted from highstatistics histograms of the magnetization applying histogram reweighting techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Gunton, M. S. Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983).

    Google Scholar 

  2. H. J. Herrmann, W. Janke, and F. Karsch, eds.,Dynamics of First Order Phase Transitions (World Scientific, Singapore, 1992).

    Google Scholar 

  3. B. A. Berg and T. Neuhaus,Phys. Lett. B 267:649 (1991);Phys. Rev. Lett. 68:9 (1992).

    Google Scholar 

  4. W. Janke, B. A. Berg, and M. Katoot,Nucl. Phys. B 382:649 (1992).

    Google Scholar 

  5. B. A. Berg, U. Hansmann, and T. Neuhaus,Phys. Rev. B 47:497 (1993);Z. Phys. B 90:229 (1993); U. Hansmann, B. A. Berg, and T. Neuhaus, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992).

    Google Scholar 

  6. A. Billoire, T. Neuhaus, and B. A. Berg,Nucl. Phys. B 396:779 (1993);413:795 (1994).

    Google Scholar 

  7. B. Grossmann and M. L. Laursen, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992),Nucl. Phys. B 408:637 (1993); B. Grossmann, M. L. Laursen, T. Trappenberg, and U.-J. Wiese,Phys. Lett. B 293:175 (1993).

    Google Scholar 

  8. B. A. Berg, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992).

    Google Scholar 

  9. W. Janke, inDynamics of First Order Phase Transitions, H. J. Herrmann, W. Janke, and F. Karsch, eds. (World Scientific, Singapore, 1992).

    Google Scholar 

  10. C. F. Baillie,Int. J. Mod. Phys. C 1:91, (1990); R. H. Swendsen, J.-S. Wang, and A. M. Ferrenberg, New Monte Carlo methods for improved efficiency of computer simulations in statistical mechanics, inThe Monte Carlo Method in Condensed Matter Physics, K. Binder, ed. (Springer, Berlin, 1992), p. 75; A. D. Sokal, Bosonic algorithms, inQuantum Fields on the Computer, M. Creutz, ed. (World Scientific, Singapore, 1992), p. 211; A. D. Kennedy,Nucl. Phys. B (Proc. Suppl.) 30:96 (1993).

    Google Scholar 

  11. J. Goodman and A. D. Sokal,Phys. Rev. Lett. 56:1015 (1986);Phys. Rev. D 40:2035 (1989).

    Google Scholar 

  12. G. Mack, inNonperturbative Quantum Field Theory, G. t'Hooft et al., eds. (Plenum Press, New York, 1988).; G. Mack and S. Meyer,Nucl. Phys. B (Proc. Suppl.) 17:293 (1990).

    Google Scholar 

  13. D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr.,Phys. Rev. Lett. 60:1591 (1988); D. Kandel, E. Domany, and A. Brandt,Phys. Rev. B 40:330 (1989).

    Google Scholar 

  14. R. G. Edwards, J. Goodman, and A. D. Sokal.Nucl. Phys. B 354:289 (1991); A. Hulsebos, J. Smit, and J. C. Vink,Nucl. Phys. B 356:775 (1991); R. G. Edwards, S. J. Ferreira, J. Goodman, and A. D. Sokal,Nucl. Phys. B 380:621 (1992); M. L. Laursen and J. C. Vink,Nucl. Phys. B 401:745 (1993).

    Google Scholar 

  15. W. Janke and T. Sauer,Chem. Phys. Lett. 201:499 (1993).

    Google Scholar 

  16. W. Janke and T. Sauer, inPath Integrals from meV to MeV, H. Grabert etal., eds. (World Scientific, Singapore, 1993) p. 17.

    Google Scholar 

  17. W. Janke and T. Sauer,Phys. Rev. E 49:3475 (1994).

    Google Scholar 

  18. K. Rummukainen,Nucl. Phys. B 390:621 (1993).

    Google Scholar 

  19. W. Kerler and A. Weber,Phys. Rev. B 47:11563 (1993).

    Google Scholar 

  20. A. Milchev, D. W. Heermann, and K. Binder,J. Stat. Phys. 44:749 (1986).

    Google Scholar 

  21. R. C. Brower and P. Tamayo,Phys. Rev. Lett. 62:1087 (1989).

    Google Scholar 

  22. R. Toral and A. Chakrabarti,Phys. Rev. B 42:2445 (1990).

    Google Scholar 

  23. B. Mehlig and B. M. Forrest,Z. Phys. 89:89 (1992); B. Mehlig, A. L. C. Ferreira, and D. W. Heermann,Phys. Lett. B 291:151 (1992).

    Google Scholar 

  24. K. Binder,Z. Phys. B 43:119 (1981);Phys. Rev. A 25:1699 (1982).

    Google Scholar 

  25. N. Madras and A. D. Sokal,J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  26. G. M. Torrie and J. P. Valleau,Chem. Phys. Lett. 28:578 (1974);J. Comp. Phys. 23:187 (1977); I. S. Graham and J. P. Valleau,J. Phys. Chem. 94:7894 (1990); J. P. Valleau,J. Comp. Phys. 96:193 (1991).

    Google Scholar 

  27. W. Hackbusch,Multi-Grid Methods and Applications (Springer, Berlin, 1985).

    Google Scholar 

  28. S. F. McCormick, ed.,Multigrid Methods, Theory, Applications, and Supercomputing (Dekker, New York, 1988).

    Google Scholar 

  29. A. D. Sokal, New York University preprint NYU-TH-93/07/02.

  30. T. Neuhaus,Nucl. Phys. B (Proc. Suppl.) 34:667 (1994).

    Google Scholar 

  31. M. Grabenstein and K. Pinn,J. Stat. Phys. 71:607 (1993).

    Google Scholar 

  32. R. G. Miller,Biometrika 61:1 (1974); B. Efron,The Jackknife, The Bootsrap and other Resampling Plants (SIAM, Philadelphia, 1982).

    Google Scholar 

  33. A. Billoire, R., Lacaze, A. Morel, S. Gupta, A. Irbäck, and B. Peterson,Nucl. Phys. B 358:231 (1991); W. Janke, unpublished notes.

    Google Scholar 

  34. A. M. Ferrenberg and R. H. Swendsen,Phys. Rev. Lett. 61:2635 (1988);63:1195 (1989); Erratum,63:1658 (1989).

    Google Scholar 

  35. U.-J. Wiese, Bern preprint BUTP-92/37.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janke, W., Sauer, T. Application of the multicanonical multigrid Monte Carlo method to the two-dimensional φ4: Autocorrelations and interface tension: Autocorrelations and interface tension. J Stat Phys 78, 759–798 (1995). https://doi.org/10.1007/BF02183687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183687

Key Words

Navigation