Skip to main content

Large Scale Numerics Uncovering New States of Matter

  • Conference paper
  • First Online:
Sustained Simulation Performance 2013

Abstract

While in condensed matter systems the constituents are well known, namely electrons, neutrons and protons, their interplay may give rise to unexpected states of matter. In this contribution we concentrate on strongly correlated electrons in one dimension driven out of equilibrium. This requires in principle, the solution of Schrödinger’s equation dealing with a space of states, whose dimension increases exponentially with the number of electrons. Implementing an algorithm that requires only polynomially increasing computational resources, namely the time-dependent density matrix renormalization group (t-DMRG), we show that an electron injected into the system, fractionalizes in several portions, some of them carrying charge but no spin, and others carrying the spin and partial charge, in spite of the electron being an elementary particle in isolation. The characterization of such a fractionalization of charge and spin was made possible by the access to HPC plattforms with large memory processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balibar, S.: The enigma of supersolidity. Nature 464 pp. 176–182, (2010)

    Article  Google Scholar 

  2. Mazin, I.: Superconductivity gets an iron boost. Nature 464 pp. 183–186, (2010)

    Article  Google Scholar 

  3. Stern, A.: Non-Abelian states of matter. Nature 464 pp. 187–193, (2010)

    Article  Google Scholar 

  4. Moore, C.: The birth of topological insulators. Nature 464 pp. 194–198, (2010)

    Article  Google Scholar 

  5. Balents, L.: Spin liquids in frustrated magnets. Nature 464 pp. 199–208, (2010)

    Article  Google Scholar 

  6. Deshpande, V. V., Bockrath, M., Glazman, L. I., and Yacoby, A.: Electron liquids and solids in one dimension. Nature 464 pp. 209–216, (2010)

    Article  Google Scholar 

  7. Csontos, D.: Exotic matter. Nature 464 pp. 175, (2010)

    Article  Google Scholar 

  8. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004).

    MATH  Google Scholar 

  9. T. Lorenz, M. Hofmann, M. Gruninger, A. Freimuth, G. S. Uhrig, M. Dumm, and M. Dressel, Nature 418, 614 (2002).

    Article  Google Scholar 

  10. O. M. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. I. Halperin, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Science 308, 88 (2005).

    Article  Google Scholar 

  11. C. Blumenstein, J. Schäfer, S. Mietke, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, and R. Claessen, Nature Phys. 7, 776 (2011).

    Article  Google Scholar 

  12. K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B 61, 16397 (2000).

    Article  Google Scholar 

  13. H. Steinberg, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, B. I. Halperin, and K. L. Hur, Nature Phys. 4, 116 (2008).

    Article  Google Scholar 

  14. A. Imambekov and L. I. Glazman, Science 323, 228 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Shashi, L. I. Glazman, J.-S. Caux, and A. Imambekov, Phys. Rev. B 84, 045408 (2011).

    Article  Google Scholar 

  16. J. M. P. Carmelo, K. Penc, and D. Bozi, Nucl. Phys. B 725, 421 (2005); 737, 351 (2006).

    Google Scholar 

  17. G. Barak, H. Steinberg, L. N. Pfeiffer, K. W. West, L. Glazman, F. von Oppen, and A. Yacoby, Nature Phys. 6, 489 (2010).

    Article  Google Scholar 

  18. A. Moreno, A. Muramatsu, and J. M. P. Carmelo, Phys. Rev. B 87, 075101 (2013).

    Article  Google Scholar 

  19. S. R. White and A. E. Feiguin, Phys. Rev. Lett 93, 076401 (2004).

    Article  Google Scholar 

  20. A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.: Theor. Exp. P04005 (2004).

    Google Scholar 

  21. P. A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991).

    Article  Google Scholar 

  22. P. A. Bares, J. M. P. Carmelo, J. Ferrer, and P. Horsch, Phys. Rev. B 46, 14624 (1992).

    Article  Google Scholar 

  23. M. Ogata, M. Luchini, S. Sorella, and F. Assaad, Phys. Rev. Lett 66, 2388 (1991).

    Article  Google Scholar 

  24. A. Moreno, A. Muramatsu, and S. R. Manmana, Phys. Rev. B 83, 205113 (2011).

    Article  Google Scholar 

  25. S. R. White, Phys. Rev. Lett 69, 2863 (1992).

    Article  Google Scholar 

  26. S. R. White, Phys. Rev. B 48, 10345 (1993).

    Article  Google Scholar 

  27. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

    Article  Google Scholar 

  28. U. Schollwöck, Ann. Phys. 326, 96 (2011).

    Article  MATH  Google Scholar 

  29. J. M. P. Carmelo, L. M. Martelo, and K. Penc, Nucl. Phys. B 737, 237 (2006).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. M. and A. M. acknowledge support by the DFG through SFB/TRR 21. A. M. and J. M. P. C. thank the hospitality and support of the Beijing Computational Science Research Center, where part of the work was done. J. M. P. C. thanks the hospitality of the Institut für Theoretische Physik III, Universität Stuttgart, and the financial support by the Portuguese FCT both in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and under SFRH/BSAB/1177/2011, the German transregional collaborative research center SFB/TRR21, and Max Planck Institute for Solid State Research. A. M. thanks the KITP, Santa Barbara, for hospitality. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. We are very grateful to HLRS (Stuttgart) and NIC (Jülich) for providing the necessary supercomputer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Moreno, A., Carmelo, J.M.P., Muramatsu, A. (2013). Large Scale Numerics Uncovering New States of Matter. In: Resch, M., Bez, W., Focht, E., Kobayashi, H., Kovalenko, Y. (eds) Sustained Simulation Performance 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-01439-5_9

Download citation

Publish with us

Policies and ethics