Skip to main content
Log in

Multifractal analysis of infinite products

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct a family of measures called infinite products which generalize Gibbs measures in the one-dimensional lattice gas model. The multifractal properties of these measures are studied under some regularity conditions. In particular, if the τ-function is differentiable, we prove a formula which gives the Hausdorff dimension and packing dimension of the set of singularity points of a given order. Mathematical examples include Riesz products,g-measures, andG-measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bohr and D. Rand, The entropy function for characteristic exponents,Physica 25D:387–398 (1987).

    Google Scholar 

  2. R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  3. G. Brown and A. H. Dooley, Odometer actions onG-measures,Ergod. Theory Dynam. Syst. 11:279–307 (1991).

    Google Scholar 

  4. G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of measures,J. Stat. Phys. 66:775–790 (1992).

    Google Scholar 

  5. R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals,Adv. Math. 92:196–236 (1992).

    Google Scholar 

  6. P. Collet, Hausdorff dimension of singularities for invariant measures of expanding dynamical systems, inDynamical Systems Valparaiso 1986, R. Bamón et al., eds. (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  7. P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47:609–644 (1987).

    Google Scholar 

  8. R. S. Ellis, Large deviations for a class of random vectors,Ann. Prob. 12:1–12 (1984).

    Google Scholar 

  9. A. H. Fan, Sur les dimensions de mesures,Studia Math. 111(1):1–17 (1994).

    Google Scholar 

  10. A. H. Fan, On uniqueness ofG-measures andg-measures,Studia Math. 119(3):255–269 (1996).

    Google Scholar 

  11. A. H. Fan, Ergodicity, unidimensionality and multifractality of self-similar measures,Kyushu J. Math., to appear.

  12. A. H. Fan, Analyse multifractale de certains produits de Riesz,C. R. Acad. Sci. Paris I 321:399–404 (1995).

    Google Scholar 

  13. U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, appendix to U. Frisch, Fully developed turbulence and intermittence, inTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (North-Holland, Amsterdam, 1985), pp. 84–88.

    Google Scholar 

  14. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. shraiman, Fractal measures and their singularities: The characterisation of strange sets,Phys. Rev. A 33:1141 (1986).

    Google Scholar 

  15. M. Keane, Strongly mixingg-measures,Inv. Math. 16:309–324 (1974).

    Google Scholar 

  16. J. K. C. Kingman,Subadditive Processes (Springer, Berlin 1976).

    Google Scholar 

  17. K. S. Lau, Fractal measures and the meanp-variations convolutions,J. Funct. Anal. 108:427–457 (1992).

    Google Scholar 

  18. K. S. Lau and S. M. Ngai, Multifractal measure and a weak separation condition, preprint.

  19. K. S. Lau and J. R. Wang, Mean quadratic variations and Fourier asymptotics of selfsimilar measures,Monatsh. Math. 115:99–132 (1993).

    Google Scholar 

  20. P. Mattila,Geometry of Sets and Measures in Euclidean Space (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  21. B. Mandelbrot, Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence, inStatistical Models and Turbulence (Springer-Verlag, Berlin, 1972), pp. 333–351.

    Google Scholar 

  22. L. Olsen, A multifractal formalism,Adv. Math., to appear.

  23. K. Petersen,Ergodic Theory (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  24. J. Peyrière, Études de quelques propriétés des produits de Riesz,Ann. Inst. Fourier 25:127–169 (1975).

    Google Scholar 

  25. D. Rand, The singularity spectrumf(α) for cookie-cutters,Ergod. Theory Dynam. Syst. 9:527–541 (1989).

    Google Scholar 

  26. R. T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, New Jersey, 1970).

    Google Scholar 

  27. C. R. T. Roger,Hausdorff Measures (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  28. D. Ruelle,Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics (Addison-Wesley, Readings, Massachusetts, 1978).

    Google Scholar 

  29. D. Simplaere, Thèse, Université de Paris VI (1992).

  30. R. S. Strichartz, Self-similar measures and their Fourier transforms I,Indiana Univ. Math J. 39:155–186 (1989).

    Google Scholar 

  31. R. S. Strichartz, Self-similar measures and their Fourier transforms III,Indiana Univ. Math J. 42:367–411 (1989).

    Google Scholar 

  32. M. Tamashiro, Dimension in a separable metric space, preprint.

  33. T. Tel, Fractals and multifractals,Z. Naturforsch. 43A:1154–1174 (1988).

    Google Scholar 

  34. C. Tricot, Two definitions of fractional dimension,Math. Proc. Camb. Philos. Soc. 91:57–74 (1982).

    Google Scholar 

  35. A. Zygmund,Trigonometric Series, Vols. 1 & 2, 2nd ed. (Cambridge University Press, Cambridge, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, F.A. Multifractal analysis of infinite products. J Stat Phys 86, 1313–1336 (1997). https://doi.org/10.1007/BF02183625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183625

Key Words

Navigation