Skip to main content

Regularising Infinite Products by the Asymptotics of Finite Products

  • Conference paper
  • First Online:
Schrödinger Operators, Spectral Analysis and Number Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 348))

  • 798 Accesses

Abstract

We introduce a regularisation process for a sequence of real numbers computing the constant coefficient in an asymptotic expansion associated with the original sequence. We give explicit computations in several interesting particular cases. This approach originates in a geometric context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Chaumard, Discretisation de zeta-determinants d’operateurs de Schrödinger sur le tore. Bull. Soc. Math. France 134, 327–355 (2006)

    Article  MathSciNet  Google Scholar 

  2. G. Chinta, J. Jorgenson, A. Karlsson, Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori. Nagoya Math. J. 198, 121–172 (2010)

    Article  MathSciNet  Google Scholar 

  3. J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms. Amer. J. Math. 98, 79–104 (1976)

    Article  MathSciNet  Google Scholar 

  4. J. Dodziuk, V.K. Patodi, Riemannian structures and triangulations of manifolds. J. Ind. Math. Soc. 40, 1–52 (1976)

    MathSciNet  MATH  Google Scholar 

  5. B. Eckmann, Harmonische Funktionen und Randvertanfgaben in einem Komplex, Commentarii Math. Helvetici 17(1944–45) 240–245

    Google Scholar 

  6. G.H. Hardy, On the function \(P_{\rho }(x)\). Quart. J. Math. Oxford 37, 146–172 (1905)

    Google Scholar 

  7. J. Jorgenson, S. Lang, Basic Analysis of Regularized Series and Products (Springer, Berlin, 1993)

    Google Scholar 

  8. W. Müller, Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28, 233–305 (1978)

    Article  MathSciNet  Google Scholar 

  9. D.B. Ray, I.M. Singer, R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MathSciNet  Google Scholar 

  10. M. Spreafico, A generalisation of the Euler Gamma function. Funct. Anal. App. 39, 87–91 (2005)

    MATH  Google Scholar 

  11. M. Spreafico, Zeta invariants for sequences of spectral type, special functions and the Lerch formula. Proc. Roy. Soc. Edinburgh 136A, 863–887 (2006)

    Article  MathSciNet  Google Scholar 

  12. M. Spreafico, Zeta invariants for Dirichlet series. Pacific J. Math. 224, 185–200 (2006)

    Article  MathSciNet  Google Scholar 

  13. M. Spreafico, Zeta invariants for double sequences of spectral type. Proc. Am. Math. Soc. 140, 1881–1896 (2012)

    Article  Google Scholar 

  14. M. Spreafico, Asymptotics of the determinant of the discrete Laplacian on the circle. Rev. Mat. Complut. 31, 237–245 (2018)

    Article  MathSciNet  Google Scholar 

  15. G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann. 76, 490–503 (1915)

    Article  MathSciNet  Google Scholar 

  16. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, vol. 46, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Spreafico .

Editor information

Editors and Affiliations

Appendix: The Abel Summation Formula

Appendix: The Abel Summation Formula

For the material in this section, see Chapter I.0 of Tenenbaum [16]. We recall Abel’s Partial Summation Formula. We use it in the proof of Proposition 4.3 with \(a_n = 1\) and \(A(x) = [x]\).

Lemma 4.4

(Abel Formula) Let \((a_n)_{n \ge 1}\) be a sequence of complex numbers, and set

$$ A(x) := \sum _{n \le x} a_n. $$

Let \(\phi \in \mathcal {C}^1 \bigl ( {\mathbb {R}}^+ \bigr )\) and \(x \ge 1\). Then we have

$$ \sum _{n \le x} a_n \phi (n) = A(x) \phi (x) - \int _1^x A(t) \phi '(t) \, \mathrm {d}t. $$

We also need the following easy result in the course of the proofs of Lemmas 4.1, 4.2 and 4.3.

Lemma 4.5

Let \(N \ge 1\) be an integer and \(f \in \mathcal {C}^1([1, N])\). Let \(g_0(t) = \{ t \} - \frac{1}{2}\), \(g_1(t) = \frac{1}{2} \{ t \}^2 - \frac{1}{2} \{ t \} + \frac{1}{12}\) and \(g_2(t) = \frac{1}{6} \{ t \}^3 - \frac{1}{4} \{ t \}^2 + \frac{1}{12} \{ t \}\), so that \(g_0\), \(g_1\), \(g_2 \in \mathcal {C}^0({\mathbb {R}}) \cap \mathcal {C}^2({\mathbb {R}}\setminus {\mathbb {Z}})\) and \(g_1'(t) = g_0(t)\) and \(g_2'(t) = g_1(t)\) for \(t \notin {\mathbb {Z}}\). We have

$$\begin{aligned} \int _1^N g_0(t) f(t) \,\mathrm {d}t = \frac{1}{12} \bigl ( f(N) - f(1) \bigr ) - \int _1^N g_1(t) f'(t) \, \mathrm {d}t. \end{aligned}$$
(4.4)

If \(f \in \mathcal {C}^2([1, N])\), then

$$\begin{aligned} \int _1^N g_0(t) f(t) \,\mathrm {d}t = \frac{1}{12} \bigl ( f(N) - f(1) \bigr ) + \int _1^N g_2(t) f''(t) \, \mathrm {d}t. \end{aligned}$$
(4.5)

For the proof, we just remark that we can integrate by parts repeatedly over intervals of the form \([n, n + 1]\) for \(n = 1\), 2, ..., \(N - 1\), and then add the results. We exploit the fact that \(g_0\), \(g_1\) and \(g_2\) are periodic functions with period 1, and that they have average 0 over a period.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spreafico, M., Zaccagnini, A. (2021). Regularising Infinite Products by the Asymptotics of Finite Products. In: Albeverio, S., Balslev, A., Weder, R. (eds) Schrödinger Operators, Spectral Analysis and Number Theory. Springer Proceedings in Mathematics & Statistics, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-030-68490-7_13

Download citation

Publish with us

Policies and ethics