Skip to main content
Log in

Metastable decay rates, asymptotic expansions, and analytic continuation of thermodynamic functions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The grand potentialP(z)/kT of the cluster model at fugacityz, neglecting interactions between clusters, is defined by a power series n Q n z n, whereQ n , which depends on the temperatureT, is the “partition function” of a cluster of sizen. At low temperatures this series has a finite radius of convergencez s . Some theorems are proved showing that ifQ n , considered as a function ofn, is the Laplace transform of a function with suitable properties, thenP(z) can be analytically continued into the complexz plane cut along the real axis fromz s to +∞ and that (a) the imaginary part ofP(z) on the cut is (apart from a relatively unimportant prefactor) equal to the rate of nucleation of the corresponding metastable state, as given by Becker-Döring theory, and (b) the real part ofP(z) on the cut is approximately equal to the metastable grand potential as calculated by truncating the divergent power series at its smallest term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. I'A. Bromwich,Infinite Series (Macmillan, 1908), Section 112, p. 293.

  2. R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen,Ann. Phys. 24:719–752 (1935).

    Google Scholar 

  3. C. Borgs, Private communication (1994).

  4. J. Bricmont, K. Gawedski, O. Gabber, and A. Kupiainen, Private communication (1994).

  5. H. S. Carslaw and J. C. Jaeger,Operational Methods in Applied Mathematics, 2nd ed. (Oxford University Press, Oxford, 1948), p. 354.

    Google Scholar 

  6. M. E. Fisher, The theory of condensation and the critical point,Physics 3:255–283 (1967).

    Google Scholar 

  7. B. Gaveau and L. S. Schulman, Metastable decay rates and analytic continuation,Lett. Math. Phys. 18:201–208 (1989).

    Google Scholar 

  8. R. B. Griffiths, Microcanonical ensemble in quantum statistical mechanics,J. Math. Phys. 6:1447–1461 (1965).

    Google Scholar 

  9. C. C. A. Günther, P. A. Rikvold, and M. A. Novotny, Transfer-matrix study of metastability in thed=2 Ising model,Phys. Rev. Lett. 71:3898–3901 (1993).

    Google Scholar 

  10. T. L. Hill,Statistical Mechanics: Principles and Selected Applications (McGraw-Hill, New York, 1956), Section 26.

    Google Scholar 

  11. S. N. Isakov, Nonanalytic features of the first-order phase transition in the Ising model,Commun. Math. Phys. 95:427–443 (1984).

    Google Scholar 

  12. J. S. Langer, Statistical theory of the decay of metastable states,Ann. Phys. 54:258–275 (1969).

    Google Scholar 

  13. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions, II. Lattice gas and Ising model,Phys. Rev. 87, 410–419 (1952).

    Google Scholar 

  14. S. Mandelbrojt,C. R. Acad. Sci. Paris 209:977 (1939).

    Google Scholar 

  15. J. C. Maxwell, On the dynamical evidence of the molecular constitution of bodies, inThe Scientific Papers of James Clerk Maxwell, W. A. Niven ed. (1890) (reprinted, Dover, New York, 1965), Vol. 2, pp. 418–438.

    Google Scholar 

  16. R. J. McCraw and L. S. Schulman, Metastability in the two-dimensional Ising model,J. Stat. Phys. 18:293–308 (1978).

    Google Scholar 

  17. A. Messiah,Quantum Mechanics (North-Holland, Amsterdam, 1965), Section X15–16, pp. 399–402.

    Google Scholar 

  18. C. M. Newman and L. S. Schulman, Complex free energies and metastable lifetimes,J. Stat. Phys. 23:131–148 (1980).

    Google Scholar 

  19. O. Penrose, Metastable states for the Becker-Döring cluster equations,Commun. Math. Phys. 121:527–540 (1989).

    Google Scholar 

  20. O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals-Maxwell theory,J. Stat. Phys. 3:211–241 (1971).

    Google Scholar 

  21. A. C. Pipkin,A Course on Integral Equations (Springer, 1991), p. 174.

  22. G. Roepstorff and L. S. Schulman, Metastability and analyticity in a dropletlike model,J. Stat. Phys. 34:35–56 (1984).

    Google Scholar 

  23. L. S. Schulman, A stochastic process with metastability and complex free energy,Phys. Rep. 77:359–362 (1981).

    Google Scholar 

  24. J. G. Taylor and J. Gunson, Unstable particles in a general field theory,Phys. Rev. 119:1121–1125 (1960); single-particle singularities in scattering and production amplitudes,Nuovo Cimento 15:806 (1960).

    Google Scholar 

  25. U. Weiss,Quantum Dissipative Systems (World Scientific, Singapore, 1993), esp. Section 8.4.

    Google Scholar 

  26. W. Zwerger, Dynamical interpretation of a classical complex free energy,J. Phys. A: Math. Gen. 18:2079–2085 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penrose, O. Metastable decay rates, asymptotic expansions, and analytic continuation of thermodynamic functions. J Stat Phys 78, 267–283 (1995). https://doi.org/10.1007/BF02183348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183348

Key Words

Navigation