Skip to main content
Log in

The chiral Potts models revisited

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review some exact results obtained so far in the chiral Potts models and translate these results into language more transparent to physicists, so that experts in Monte Carlo calculations, high- and low-temperature expansions, and various other methods can use them. We pay special attention to the interfacial tensionɛ r between thek state and thek-r state. By examining the ground states, it is seen that the integrable line ends at a superwetting point, on which the relationɛ r = 1 is satisfied, so that it is energetically neutral to have one interface or more. We present also some partial results on the meaning of the integrable line for low temperatures, where it lives in the nonwet regime. We make Baxter's exact results more explicit for the symmetric case. By performing a Bethe Ansatz calculation with open boundary conditions we confirm a dilogarithm identity for the low-temperature expansion which may be new. We propose a new model for numerical studies. This model has only two variables and exhibits commensurate and incommensurate phase transitions and wetting transitions near zero temperature. It appears to be not integrable, except at one point, and at each temperature there is a point where it is almost identical with the integrable chiral Potts model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager,Phys. Rev. 65:117 (1944).

    Google Scholar 

  2. L. Onsager,Nuovo Cimento Ser. 9 6(Suppl.):261 (1949).

    Google Scholar 

  3. L. Onsager, inCritical Phenomena in Alloys, Magnets and Superconductors, R. E. Mills, E. Ascher, and R. I. Jaffee, eds. (McGraw-Hill, New York, 1971), pp. xix-xxiv, 3–12.

    Google Scholar 

  4. B. Kaufman,Phys. Rev. 76:1232 (1949).

    Google Scholar 

  5. B. Kaufman and L. Onsager,Phys. Rev. 76:1244 (1949).

    Google Scholar 

  6. A. E. Kennelly,Electrical World Engineer 34:413 (1899).

    Google Scholar 

  7. J. B. McGuire,J. Math. Phys. 5:622 (1964).

    Google Scholar 

  8. C. N. Yang,Phys. Rev. Lett. 19:1312 (1967).

    Google Scholar 

  9. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  10. H. Au-Yang and J. H. H. Perk, inAdvanced Studies in Pure Mathematics, Vol. 19 (Kinokuniya-Academic, Tokyo, 1989), p. 57.

    Google Scholar 

  11. V. G. Kac, inInfinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  12. H. Bethe,Z. Phys. 71:205 (1931).

    Google Scholar 

  13. P. P. Kulish and E. K. Sklyanin, inIntegrable Quantum Field Theories, J. Hietarinta and C. Montonen, eds. (Springer, Berlin, 1981), p. 61.

    Google Scholar 

  14. M. Jimbo,Lett. Math. Phys. 10:63 (1985).

    Google Scholar 

  15. V. V. Bazhanov,Phys. Lett. B 159:321 (1985).

    Google Scholar 

  16. V. G. Drinfel'd, inProceedings of the International Congress of Mathematicians (Berkeley, California, 1986), p. 798.

    Google Scholar 

  17. L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, inAlgebraic Analysis, Vol. 1, M. Kashiwara and T. Kawai, eds. (Academic Press, San Diego, 1988), p. 129.

    Google Scholar 

  18. T. T. Wu,Phys. Rev. 149:380 (1966).

    Google Scholar 

  19. L. P. Kadanoff,Nuovo Cimento 44B:276 (1966).

    Google Scholar 

  20. M. E. Fisher and R. J. Burford,Phys. Rev. 156:583 (1967).

    Google Scholar 

  21. T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch,Phys. Rev. B 13:316 (1976).

    Google Scholar 

  22. M. Sato, T. Miwa, and M. Jimbo,Proc. Japan Acad. 53A:6, 147, 153, 183 (1977).

    Google Scholar 

  23. J. H. H. Perk,Phys. Lett. A 79:3 (1980).

    Google Scholar 

  24. E. H. Lieb,Phys. Rev. Lett. 18:692 (1967).

    Google Scholar 

  25. E. H. Lieb and F. Y. Wu, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), p. 331.

    Google Scholar 

  26. G. von Gehlen and V. Rittenberg,Nucl. Phys. B 257 [FS14]:351 (1985).

    Google Scholar 

  27. L. Dolan and M. Grady,Phys. Rev. D 25:1587 (1982).

    Google Scholar 

  28. J. H. H. Perk, inTheta Functions Bowdoin 1987 (American Mathematical Society, Providence, Rhode Island, 1989).

    Google Scholar 

  29. B. Davies,J. Math. Phys. 32:2945 (1991).

    Google Scholar 

  30. H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M. L. Yan,Phys. Lett. A 123:219 (1987).

    Google Scholar 

  31. R. J. Baxter, J. H. H. Perk, and H. Au-Yang,Phys. Lett. A 128:138 (1988).

    Google Scholar 

  32. G. Albertini, B. M. McCoy, J. H. H. Perk, and S. Tang,Nucl. Phys. B 314:741 (1989).

    Google Scholar 

  33. A. O. Morris,Q. J. Math. Oxford Ser. 2 18:7 (1967);19:289 (1968).

    Google Scholar 

  34. A. J. Bracken and H. S. Green,Nuovo Cimento 9A:349 (1972), and references therein.

    Google Scholar 

  35. V. V. Bazhanov and Yu. G. Stroganov,J. Stat. Phys. 59:799 (1990).

    Google Scholar 

  36. C. De Concini and V. G. Kac, inOperator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, A. Connes, M. Duflo, A. Joseph, and R. Rentschler, eds. (Birkhäuser, Boston, 1990), p. 471.

    Google Scholar 

  37. R. J. Baxter,J. Stat. Phys. 57:1 (1989).

    Google Scholar 

  38. R. J. Baxter,J. Stat. Phys. 73:461 (1993).

    Google Scholar 

  39. R. J. Baxter,J. Phys. A 27:1837 (1994).

    Google Scholar 

  40. R. J. Baxter,J. Stat. Phys. 52:639 (1988).

    Google Scholar 

  41. G. Albertini, B. M. McCoy, and J. H. H. Perk, inAdvanced Studies in Pure Mathematics, Vol. 19 (Kinokuniya-Academic, Tokyo, 1989), p. 1.

    Google Scholar 

  42. R. B. Potts,Proc. Camb. Phil. Soc. 48:106 (1952).

    Google Scholar 

  43. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982);55:315 (1983).

    Google Scholar 

  44. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982), pp. 322–351.

    Google Scholar 

  45. V. A. Fateev and A. B. Zamolodchikov,Phys. Lett. A 92:37 (1982).

    Google Scholar 

  46. B. M. McCoy, J. H. H. Perk, S. Tang, and C. H. Sah,Phys. Lett. A 125:9 (1987).

    Google Scholar 

  47. H. Au-Yang, B. M. McCoy, J. H. H. Perk, and S. Tang, inAlgebraic Analysis, Vol. 1, M. Kashiwara and T. Kawai, eds. (Academic Press, San Diego, 1988), p. 29.

    Google Scholar 

  48. R. J. Baxter,Phil. Trans. R. Soc. Lond. A 289:315 (1978).

    Google Scholar 

  49. D. A. Huse, A. M. Szpilka, and M. E. Fisher,Physica A 121:363 (1983).

    Google Scholar 

  50. W. Selke and J. M. Yeomans,Z. Phys. B 46:311 (1982).

    Google Scholar 

  51. W. Selke and W. Pesch,Z. Phys. B 47:335 (1982).

    Google Scholar 

  52. M. E. Fisher,J. Stat. Phys. 34:667 (1984).

    Google Scholar 

  53. J. Yeomans and B. Derrida,J. Phys. A 18:2343 (1985).

    Google Scholar 

  54. W. Selke,Phys. Rep. 170:213 (1988).

    Google Scholar 

  55. A. L. Stella, X.-C. Xie, T. L. Einstein, and N. C. Bartelt,Z. Phys. B 67:357 (1987).

    Google Scholar 

  56. R. B. Griffiths, inPhase Transitions in Surface Films, J. G. Dash and J. Ruvalds, eds. (Plenum Press, New York, 1980), p. 1, esp. Eq. (5.13) and accompanying text.

    Google Scholar 

  57. D. B. Abraham, L. F. Ko, and N. M. Švrakić,Phys. Rev. B 38:12011 (1988), and references cited.

    Google Scholar 

  58. M. Gaudin,La Fonction d'Onde de Bethe (Masson, Paris, 1983).

    Google Scholar 

  59. A. N. Kirillov,Zap. Nauch. Semin. LOMI 164:121 (1987) [J. Sov. Math. 47:2450 (1989)].

    Google Scholar 

  60. W. Nahm, A. Recknagel, and M. Terhoeven,Mod. Phys. Lett. A 8:1835 (1993).

    Google Scholar 

  61. M. den Nijs,J. Phys. A 17:L295 (1984).

    Google Scholar 

  62. P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin,Lett. Math. Phys. 5:393 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au-Yang, H., Perk, J.H.H. The chiral Potts models revisited. J Stat Phys 78, 17–78 (1995). https://doi.org/10.1007/BF02183338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183338

Key Words

Navigation