Skip to main content
Log in

Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predicted by the Percus-Yevick approximation for the fluid state (volume fractions up to 0.50). We were not able to find crystalline 3d systems at volume fractions 0.50–0.58 as shown by former simulations of Reeet al. or experiments of Pusey and van Megen, due to the fact that we used random start configurations and no constraints of particle positions as in the cell model of Hoover and Ree, and effects of the overall entropy of the system, responsible for the melting and freezing phase transitions, are neglected in our calculations. Nevertheless, we obtained reasonable results concerning concentration-dependent long-time selfdiffusion coefficients (as shown before) and equilibrium structure of samples in the fluid state, and the determination of the volume fraction of random close packing (RCP, glassy state). As expected, polydispersity increases the respective volume fraction of RCP due to the decrease in free volume by the fraction of the smaller spheres which fill gaps between the larger particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Kops-Werkhoven and H. M. Fijnaut,J. Chem. Phys. 77:2242 (1982).

    Google Scholar 

  2. A. van Veluven, H. N. W. Lekkerkerker, C. G. de Kruif, and A. Vrij,J. Chem. Phys. 89:2810 (1988).

    Google Scholar 

  3. W. van Megen and S. M. Underwood,J. Chem. Phys. 91:552 (1989).

    Google Scholar 

  4. V. Degorgio, R. Piazza, M. Corti, and J. Stavans,J. Chem. Soc. Faraday Trans. 87: 431 (1991).

    Google Scholar 

  5. E. Bartsch, M. Antonietti, W. Schupp, and H. Sillescu,J. Chem. Phys. 97:3950 (1992).

    Google Scholar 

  6. C. A. Murray and D. H. van Winkle,Phys. Rev. Lett. 58:1200 (1987).

    Google Scholar 

  7. W. Schaertl, Ph.D. thesis, Mainz University (1992).

  8. A. Kasper, Diploma thesis, Mainz University (1993).

  9. W. Schaertl and H. Sillescu,J. Colloid Interface Sci. 155:313 (1993).

    Google Scholar 

  10. A. Kose, M. Ozaki, K. Takano, Y. Kobayashi, and S. Hachisu,J. Colloid Interface Sci. 44:330 (1973).

    Google Scholar 

  11. R. Williams and R. S. Crandall,Phys. Lett. A 48:225 (1974).

    Google Scholar 

  12. H. Yoshida, K. Ito, and N. Ise,J. Am. Chem. Soc. 112:592 (1990).

    Google Scholar 

  13. S. Stoelken, Ph.D. thesis, Mainz University, in preparation.

  14. E. B. Sirota, H. D. Ou-Yang, S. U. Sinka, P. M. Chaikin, J. D. Axe and Y. Fujii,Phys. Rev. Lett. 62:1524 (1989).

    Google Scholar 

  15. E. B. Bradford and J. W. Vanderhoff,J. Appl. Phys. 26:864 (1955).

    Google Scholar 

  16. J. W. Vanderhoff,Prepr. Am. Chem. Soc. Div. Org. Coat. Plast. 24:223 (1964).

    Google Scholar 

  17. M. Antonietti, W. Bremser, D. Müschenborn, Ch. Rosenauer, B. Schupp, and M. Schmidt,Macromolecules 24:6636 (1991).

    Google Scholar 

  18. V. Frenz, Ph.D. thesis, Mainz University, in preparation.

  19. K. Binder,Monte Carlo Methods in Statistical Physics (Springer, 1986).

  20. H. Gould and J. Tobochnik,An Introduction to Computer Simulation Methods, Parts 1 and 2 (Addison-Wesley, 1988).

  21. B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31:459 (1960).

    Google Scholar 

  22. L. Verlet,Phys. Rev. 159:98 (1967).

    Google Scholar 

  23. D. L. Ermak,J. Chem. Phys. 62:4189/4197 (1975).

    Google Scholar 

  24. D. L. Ermak and J. A. McCammon,J. Chem. Phys. 69:1352 (1978).

    Google Scholar 

  25. M. O. Robbins, K. Kremer, and G. S. Grest,J. Chem. Phys. 88:3286 (1988).

    Google Scholar 

  26. N. Pistoor and K. Kremer,Prog. Colloid Polymer Sci. 81:184 (1990).

    Google Scholar 

  27. H. Löwen and G. Szamel, to be published (1993); H. Löwen, private communication.

  28. R. Klein, W. Hess, and G. Nägele,Physics of Complex and Supramolecular Fluids (Wiley, New York, 1987).

    Google Scholar 

  29. I. Snook and W. van Megen,J. Colloid Inteface Sci. 100:194 (1984).

    Google Scholar 

  30. B. Cichocki and K. Hinsen,Physica A. 166:473 (1990).

    Google Scholar 

  31. B. Cichocki and K. Hinsen,Physica A. 187:133 (1992).

    Google Scholar 

  32. W. Schaert and H. Sillescu,J. Stat. Phys. 74:687 (1994).

    Google Scholar 

  33. M. Medina-Noyola,Phys. Rev. Lett. 60:2705 (1988).

    Google Scholar 

  34. S. Möller, Ph.D. thesis, Mainz University, in preparation.

  35. J. K. Percus and G. L. Yevick,Phys. Rev. 110:1 (1958).

    Google Scholar 

  36. E. Thiele,J. Chem. Phys. 39:474 (1963).

    Google Scholar 

  37. M. S. Wertheim,Phys Lett. 10:E501 (1963).

    Google Scholar 

  38. G. Throop and R. J. Bearman,J. Chem. Phys. 42:2408 (1965).

    Google Scholar 

  39. W. R. Smith and D. Henderson,Mol. Phys. 19:411 (1970).

    Google Scholar 

  40. D. Henderson and E. W. Grundke,J. Chem. Phys. 63:601 (1975).

    Google Scholar 

  41. W. G. Hoover and F. H. Ree,J. Chem. Phys. 49:3609 (1968).

    Google Scholar 

  42. P. N. Pusey and W. van Megen,Nature 320:340 (1986).

    Google Scholar 

  43. L. V. Woodcock,J. Chem. Soc. Faraday II 72:1667 (1976).

    Google Scholar 

  44. L. V. Woodcock,Ann. N. Y. Acad. Sci. 37:274 (1981).

    Google Scholar 

  45. B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson,J. Stat. Phys. 64:501 (1991).

    Google Scholar 

  46. P. N. Pusey, InLight Scattering in Liquids and Macromolecular Solutions (Plenum Press, New York, 1980).

    Google Scholar 

  47. W. K. Pratt,Digital Image Processing (Wiley, 1978).

  48. R. W. Ramirez,The FFT (Tektronix, New Jersey, 1985).

    Google Scholar 

  49. P. van Beurten and A. Vrij,J. Chem. Phys. 74:2744 (1981).

    Google Scholar 

  50. J. L. Lebowitz,Phys. Rev. 133:A895 (1964).

    Google Scholar 

  51. A. Vrij,J. Chem. Phys. 69:1742 (1978).

    Google Scholar 

  52. C. G. de Kruif, W. J. Briels, R. P. May, and A. Vrij,Langmuir 4:668 (1988).

    Google Scholar 

  53. J. L. Barrat and J. P. Hansen,J. Phys. (Paris)47:1547 (1986).

    Google Scholar 

  54. P. N. Pusey,J. Phys. (Paris)48:709 (1987).

    Google Scholar 

  55. W. Schaertl and H. Sillescu, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaertl, W., Sillescu, H. Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings. J Stat Phys 77, 1007–1025 (1994). https://doi.org/10.1007/BF02183148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183148

Key Words

Navigation