Skip to main content
Log in

The collapse point of interacting trails in two dimensions from kinetic growth simulations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present simulational evidence that kinetic growth trails on the square lattice are equivalent to interacting trails at their collapse temperature. As a consequence we give values for most of the canonical exponents of the trail collapse transition: these are significantly different from those proposed for interacting walks. We can also interpret our results in terms of the equivalent Lorentz lattice gas and find that this model does not display diffusion, as has been previously thought. Rather, the mean square displacement grows ast logt in timet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Malakis,Physica 84:256 (1976).

    Google Scholar 

  2. Y. Shapir and Y. Oono,J. Phys. A 17:L39 (1984).

    Google Scholar 

  3. H. A. Lim, A. Guha, and Y. Shapir,J. Phys. A 21:773 (1984).

    Google Scholar 

  4. I. S. Chang, A. Guha, H. A. Lim, and Y. Shapir,J. Phys. A 21:L559 (1988).

    Google Scholar 

  5. A. J. Guttmann,J. Phys. A 18:567 (1985).

    Google Scholar 

  6. A. J. Guttmann,J. Phys. A 18:575 (1985).

    Google Scholar 

  7. P.-G. de Gennes,Phys. Lett. 38A:339 (1972).

    Google Scholar 

  8. J. des Cloizeaux,J. Phys. (Paris) 36:281 (1975).

    Google Scholar 

  9. P. D. Gujrati,Phys. Rev. 24:2096 (1981).

    Google Scholar 

  10. D. Napper,Polymeric Stabilisation of Colloidal Dispersions (Academic Press, London, 1983).

    Google Scholar 

  11. J. des Cloizeaux and G. Jannink,Polymers in Solution (Clarendon Press, Oxford, 1990).

    Google Scholar 

  12. P. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).

    Google Scholar 

  13. P. G. de Gennes,J. Phys. Lett. (Paris) 36:L55 (1975).

    Google Scholar 

  14. B. Duplantier and H. Saleur,Phys. Rev. Lett. 59:539 (1987).

    Google Scholar 

  15. H. Meirovitch and H. A. Lim,Phys. Rev. Lett. 62:2640 (1989).

    Google Scholar 

  16. I. S. Chang and H. Meirovitch,Phys. Rev. Lett. 69:2232 (1992).

    Google Scholar 

  17. T. Prellberg and A. L. Owczarek,J. Phys. A 27:1811 (1994).

    Google Scholar 

  18. M. T. Batchelor, A. L. Owczarek, K. Seaton, and C. M. Yung, Surface critical behaviour of an O(n) loop model related to two Manhatten lattice walk problems,J. Phys. A. (1994), to appear.

  19. H. Meirovitch, I. S. Chang, and Y. Shapir,Phys. Rev. A 40:2879 (1989).

    Google Scholar 

  20. I. S. Chang, H. Meirovitch, and Y. Shapir,Phys. Rev. A 41:1808 (1990).

    Google Scholar 

  21. H. A. Lim,Int. J. Mod. Phys. 3:385 (1992).

    Google Scholar 

  22. J. Lyklema,J. Phys. A 18:L617 (1985).

    Google Scholar 

  23. C. Vanderzande, A. L. Stella, and F. Seno,Phys. Rev. Lett. 67:2757 (1991).

    Google Scholar 

  24. A. Stella, F. Seno, and C. Vanderzande,J. Stat. Phys. 73:21 (1993).

    Google Scholar 

  25. D. Bennett-Wood, A. L. Owczarek, and T. Prellberg,Physica A 206:283 (1994).

    Google Scholar 

  26. B. Nienhuis,Phys. Rev. Lett. 49:1062 (1982).

    Google Scholar 

  27. A. L. Owczarek, T. Prellberg, and R. Brak,Phys. Rev. Lett. 70:951 (1993).

    Google Scholar 

  28. A. Coniglio, N. Jan, I. Majid, and H. E. Stanley,Phys. Rev. B 35:3617 (1987).

    Google Scholar 

  29. H. Saleur,J. Phys. A 20:455 (1987).

    Google Scholar 

  30. H. Meirovitch and H. A. Lim,Phys. Rev. A,39:4186 (1989).

    Google Scholar 

  31. R. Brak, A. L. Owczarek, and T. Prellberg,J. Phys. A. 26:4565 (1993).

    Google Scholar 

  32. R. M. Bradley,Phys. Rev. A 41:914 (1990).

    Google Scholar 

  33. H. Meirovitch and H. A. Lim,Phys. Rev. A 38:1670 (1988).

    Google Scholar 

  34. P. M. Binder,Complex Systems 1:559 (1987).

    Google Scholar 

  35. M. H. Ernst and P. M. Binder,J. Stat Phys. 51:981 (1988).

    Google Scholar 

  36. T. M. Ruijgrok and E. G. D. Cohen,Phys. Lett. 133:415 (1988).

    Google Scholar 

  37. X. P. Kong and E. G. D. Cohen,Phys. Rev. B 40:4838 (1989).

    Google Scholar 

  38. R. M. Ziff, X. P. Kong, and E. G. D. Cohen,Phys. Rev. A 44:2410 (1991).

    Google Scholar 

  39. D. Knuth,The Art of Computer Programming, Vol. 3: Sorting and Searching (Addison-Wesley, Reading, Massachusetts, 1969).

    Google Scholar 

  40. P. Coddington, Syracuse University Prepring SSC5 526 (1993).

  41. P. L. L'Ecuyer and S. Cote,ACM Trans. Math. Soft. 17:98 (1991).

    Google Scholar 

  42. X. P. Kong and E. G. D. Cohen,Physica D 47:9 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owczarek, A.L., Prellberg, T. The collapse point of interacting trails in two dimensions from kinetic growth simulations. J Stat Phys 79, 951–967 (1995). https://doi.org/10.1007/BF02181210

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181210

Key Words

Navigation