Skip to main content
Log in

Analytical solutions of the lattice Boltzmann BGK model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Analytical solutions of the two-dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plane Poiseuille flow and the plane Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time τ, and the lattice spacing. The analytic solutions are the exact representation of these two flows without any approximation. Using the analytical solution, it is shown that in Poiseuille flow the bounce-back boundary condition introduces an error of first order in the lattice spacing. The boundary condition used by Kadanoffet al. in lattice gas automata to simulate Poiseuille flow is also considered for the triangular lattice Boltzmann BGK model. An analytical solution is obtained and used to show that the boundary condition introduces an error of second order in the lattice spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Kadanoff, G. R. McNamara, and G. Zanetti, A Poiseuille viscometer for lattice gas automata.Complex Systems 1:791 (1987).

    Google Scholar 

  2. L. P. Kadanoff, G. R. McNamara, and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory.Phys. Rev. A 40:4527 (1989).

    Google Scholar 

  3. M. Henon, Viscosity of a lattice gas,Complex Systems 1:763 (1987).

    Google Scholar 

  4. R. Cornubert, D. d'Humières and D. Levermore, A Knudsen layer theory for lattice gases,Physica D 47(6):241 (1991).

    Google Scholar 

  5. L. S. Luo, H. Chen, S. Chen, G. D. Doolen, and Y. C. Lee, Generalized hydrodynamic transport in lattice-gas automata,Phys. Rev. A 43:7097 (1991).

    Google Scholar 

  6. I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for the three-dimensional lattice Boltzmann model,J. Phys. II France 4:191 (1994).

    Google Scholar 

  7. D. R. Noble, S. Chen, J. G. Geogiadis, and R. O. Buckius, A consistent hydrodynamic boundary condition for the lattice Boltzmann method,Phys. Fluids 7:203 (1995).

    Google Scholar 

  8. S. Chen, H. Chen, D. Martinez, and W. H. Matthaeus, Lattice Boltzmann model for simulation of magnetohydrodynamic phenomena,Phys. Rev. Lett. 67:3776 (1991).

    Google Scholar 

  9. Y. Qian, D. d'Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equation,Europhys. Lett. 17(6):479 (1992).

    Google Scholar 

  10. Y. H. Qian and S. A. Orszag, Lattice BGK models for the Navier-Stokes equation: Non-linear deviation in compressible regimes,Europhys. Lett 21(3):255 (1993).

    Google Scholar 

  11. S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann method,J. Comput. Phys. 118:329 (1995).

    Google Scholar 

  12. D. P. Ziegler, Boundary conditions for lattice Boltzmann simulations,J. Stat. Phys. 71:1171 (1993).

    Google Scholar 

  13. Y. H. Qian, Private communication.

  14. P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method,Phys. Rev. E 48:4823 (1993).

    Google Scholar 

  15. Y. Qian, Ph.D. thesis, Université Pierre et Marie Curie (January 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Q., Hou, S. & Doolen, G.D. Analytical solutions of the lattice Boltzmann BGK model. J Stat Phys 81, 319–334 (1995). https://doi.org/10.1007/BF02179981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179981

Key Words

Navigation