Skip to main content
Log in

A Discrete Nine-Velocity Model of the Boltzmann Equation: Solution in the Form of Wild Sum and Applications to Simulating Incompressible Flows

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A discrete kinetic nine-velocity model of the Boltzmann equation on a plane is considered. In the limit of small free path and low bulk velocities, this model describes flows of viscous incompressible fluids. The complete discretization of the model over the time and spatial variables, which is, in particular, required for the numerical solution, is carried out using the truncated Wild sum. It is shown that the scheme has the second order of accuracy. As an example of the application of the proposed method, numerical solutions of two benchmark problems are obtained—Taylor–Green vortices and flow in a cavity with a moving boundary. The simulation results are compared with the solutions obtained on the basis of the classical nine-velocity lattice Boltzmann model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, The Lattice Boltzmann Method. Principles and Practice (Springer, Swizerland, 2017).

  2. M. Kogan, Rarefied Gas Dynamics (Plenum, New York, 1969).

    Book  Google Scholar 

  3. L. Broadwell, “Shock structure in a simple discrete velocity gas,” Phys. Fluids 7, 1243–1247 (1964).

    Article  Google Scholar 

  4. S. Godunov and U. Sultangazin, “On discrete models of the kinetic Boltzmann equation,” Russ. Math. Surveys 26, 1–56 (1971).

    Article  Google Scholar 

  5. R. Gatignol, “The hydrodynamical description for a discrete velocity model of gas,” Complex Syst. 1, 709–725 (1987).

    MathSciNet  MATH  Google Scholar 

  6. A. Wagner, “An H-theorem for the lattice Boltzmann approach to hydrodynamics,” Europhys. Lett. 44, 144–149 (1998).

    Article  Google Scholar 

  7. W.-A. Yong and L.-S. Luo, “Nonexistence of H-theorems for the athermal lattice Boltzmann models with polynomial equilibria,” Phys. Rev. E 67, 051105 (2003).

  8. W.-A. Yong and L.-S. Luo, “Nonexistence of H-theorem for some lattice Boltzmann models,” J. Stat. Phys. 121, 91–103 (2005).

    Article  MathSciNet  Google Scholar 

  9. I. Karlin, A. Ferrante, and H. Öttinger, “Perfect entropy functions of the lattice Boltzmann method,” Europhys. Lett. 47, 182–188 (1999).

    Article  Google Scholar 

  10. S. Ansumali, I. Karlin, and H. Öttinger, “Minimal entropic kinetic models for hydrodynamics,” Europhys. Lett. 63, 798–804 (2003).

    Article  Google Scholar 

  11. I. Karlin, S. Ansumali, C. Frouzakis, and S. Chikatamarla, “Elements of the lattice Boltzmann method I: Linear advection equation,” Commun. Comput. Phys. 1, 616–655 (2006).

    MATH  Google Scholar 

  12. I. Karlin, S. Chikatamarla, and S. Ansumali, “Elements of the lattice Boltzmann method II: Kinetics and hydrodynamics in one dimension,” Commun. Comput. Phys. 2, 196–238 (2007).

    MathSciNet  Google Scholar 

  13. H. Chen, I. Goldhirsch, and S. Orszag, “Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models,” J. Sci. Comput. 34, 87–112 (2008).

    Article  MathSciNet  Google Scholar 

  14. A. Bobylev and G. Spiga, “On a class of exact two-dimensional stationary solutions for the Broadwell model of the Boltzmann equation,” J. Phys. A: Math. Gen. 27, 7451–7459 (1994).

    Article  MathSciNet  Google Scholar 

  15. A. Bobylev, “Exact solutions of discrete kinetic models and stationary problems for the plane Broadwell model,” Math. Methods Appl. Sci. 19, 825–845 (1996).

    Article  MathSciNet  Google Scholar 

  16. A. Bobylev and G. Toscani, “Two dimensional half-space problems for the Broadwell discrete velocity model,” Contin. Mech. Thermodyn. 8, 257–274 (1996).

    Article  MathSciNet  Google Scholar 

  17. A. Bobylev, G. Caraffini, and G. Spiga, “Non-stationary two-dimensional potential flows by the Broadwell model equations,” Eur. J. Mech. B Fluids 19, 303–315 (2000).

    Article  MathSciNet  Google Scholar 

  18. O. Ilyin, “The analytical solutions of 2D stationary Broadwell kinetic model,” J. Stat. Phys. 146, 67–72 (2012).

    Article  MathSciNet  Google Scholar 

  19. O. Ilyin, “Symmetries, streamline function, and exact solutions of the two-dimensional stationary kinetic Broadwell model,” Teor. Mat. Fiz. 179, 350–359 (2014).

    Article  Google Scholar 

  20. K. Uchiyama, “On the Boltzmann–Grad limit for the Broadwell model of the Boltzmann equation,” J. Stat. Phys. 52, 331–355 (1988).

    Article  MathSciNet  Google Scholar 

  21. H. Babovsky, “‘Small’ kinetic models for transitional flow simulations,” AIP Conf. Proc. 1501, 272–278 (2012).

    Article  Google Scholar 

  22. H. Babovsky, “Discrete kinetic models in the fluid dynamic limit,” Comput. Math. Appl. 67, 256–271 (2014).

    Article  MathSciNet  Google Scholar 

  23. O. Ilyin, “Discrete velocity Boltzmann model for quasi-incompressible hydrodynamics,” Mathematics 9, 993 (2021).

    Article  Google Scholar 

  24. E. Wild, “On Boltzmann’s equation in the kinetic theory of gases,” Proc. Camb. Philos. Soc. 47, 602–609 (1951).

    Article  MathSciNet  Google Scholar 

  25. H. McKean, “An exponential formula for solving Boltzmann’s equation for a Maxwellian gas,” J. Combinat. Theory 2, 358–382 (1967).

    Article  Google Scholar 

  26. E. Gabetta, L. Pareschi, and G. Toscani, “Wild’s sums and numerical approximation of nonlinear kinetic equations,” Transp. Theory Stat. Phys. 25, 515–530 (1996).

    Article  MathSciNet  Google Scholar 

  27. E. Gabetta, L. Pareschi, and G. Toscani, “Relaxation schemes for nonlinear kinetic equations,” SIAM J. Numer. Anal. 34, 2168–2194 (1997).

    Article  MathSciNet  Google Scholar 

  28. J. Latt, Hydrodynamic Limit of Lattice Boltzmann Equations, Dissertation, Geneva: University of Geneva, 2007.

  29. P. Chauvat and R. Gatignol, “Euler and Navier–Stokes description for a class of discrete models of gases with different moduli,” Transp. Theory Stat. Phys. 21, 417–435 (1992).

    Article  MathSciNet  Google Scholar 

  30. U. Ghia, K. Ghia, and C. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comp. Phys. 48, 387–411 (1982).

    Article  Google Scholar 

  31. A. Montessori, G. Falcucci, P. Prestininzi, M. La Rocca, and S. Succi, “Regularized lattice Bhatnagar–Gross–Krook model for two- and three-dimensional cavity flow simulations,” Phys. Rev. E 89, 053317 (2014).

  32. J.-S. Wu and Y.-L. Shao, “Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme,” Int. J. Numer. Meth. Fluids. 46, 921–937 (2004).

    Article  Google Scholar 

  33. J. Latt and B. Chopard, “Lattice Boltzmann method with regularized pre-collision distribution functions,” Math. Comput. Simul. 72, 165–168 (2006).

    Article  MathSciNet  Google Scholar 

  34. J. Sterling and S. Chen, “Stability analysis of lattice Boltzmann methods,” J. Comp. Phys. 123, 196–206 (1996).

    Article  Google Scholar 

  35. P. Lallemand and L.-S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev. E 61, 6546–6562 (2000).

  36. D. Siebert, Jr. L. Hegele, and P. Philippi, “Lattice Boltzmann equation linear stability analysis: Thermal and athermal models,” Phys. Rev. E 77, 026707 (2008).

  37. B. Servan-Camas and F. Tsai, “Non-negativity and stability analyses of lattice Boltzmann method for advection–diffusion equation,” J. Comp. Phys. 228, 236–256 (2009).

    Article  MathSciNet  Google Scholar 

  38. D. Ricot, S. Marié, and P. Sagaut, “Comparison between lattice Boltzmann method and Navierв–Stokes high order schemes for computational aeroacoustics,” J. Comp. Phys. 228, 1056–1070 (2009).

    Article  MathSciNet  Google Scholar 

  39. S. A. Hosseini, N. Darabiha, D. Thèvenin, and A. Eshghinejadfard, “Stability limits of the single relaxation-time advection–diffusion lattice Boltzmann scheme,” Int. J. Mod. Phys. C 28, 1750141 (2017).

  40. G. Wissocq, P. Sagaut, and J.-F. Boussuge, “An extended spectral analysis of the lattice Boltzmann method: Modal interactions and stability issues,” J. Comp. Phys. 380, 311–333 (2019).

    Article  MathSciNet  Google Scholar 

  41. P.-A. Masset and G. Wissocq, “Linear hydrodynamics and stability of the discrete velocity Boltzmann equations,” J. Fluid Mech. A 897, 29 (2020).

    Article  MathSciNet  Google Scholar 

  42. G. Wissocq, C. Coreixas, and J.-F. Boussuge, “Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods,” Phys. Rev. E. 102, 053305 (2020).

  43. G. Wissocq and P. Sagaut, “Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes,” arXiv:2104.14217v1 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ilyin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Klimontovich

APPENDIX

APPENDIX

1.1 THE CHAPMAN–ENSKOG EXPANSION

The Chapman–Enskog expansion for scheme (27)–(29) is carried out similarly to how this is done in the LBE theory (see [1, 28]). First, we expand the left-hand side of (27) in the Taylor series

$${{f}_{i}}(t + \Delta t,{\mathbf{r}} + {{{\mathbf{c}}}_{{\mathbf{i}}}}\Delta t) = {{f}_{i}}(t,{\mathbf{r}}) + \Delta t{{D}_{i}}{{f}_{i}}(t,{\mathbf{r}}) + \frac{1}{2}\Delta tD_{i}^{2}{{f}_{i}}(t,{\mathbf{r}}) + o(\Delta {{t}^{2}}),$$

where

$${{D}_{i}} = \frac{\partial }{{\partial t}} + {{{\mathbf{c}}}_{i}} \cdot \frac{\partial }{{\partial {\mathbf{r}}}}.$$

As in the standard approach used in the LBE theory (see [1, 28]), we expand the distribution function \({{f}_{i}}\) in a series in the small parameter \(\epsilon \) (Knudsen number) in a neighborhood of the local equilibrium

$${{f}_{i}} = f_{i}^{{eq}} + \epsilon {{f}_{{1,i}}} + {{\epsilon }^{2}}{{f}_{{2,i}}} + \; \ldots ;$$

we also assume that there is a number of time scales (see [1, 28]) and the derivatives with respect to the spatial variables and time are written as (see [1, 28])

$$\frac{\partial }{{\partial t}} = \epsilon \frac{\partial }{{\partial {{t}_{1}}}} + {{\epsilon }^{2}}\frac{\partial }{{\partial {{t}_{2}}}} + \; \ldots ,\quad \frac{\partial }{{\partial {\mathbf{r}}}} = \epsilon \frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}}.$$

Substitute the expansions of the derivatives and of the DF in the parameter \(\epsilon \) into Eq. (27) and collect the terms of equal orders in \(\epsilon \). The terms of order \(O(1)\) are identically equal to zero. We have the equations

$$O(\epsilon )\,:\quad \Delta t{{D}_{{1,i}}}f_{i}^{{eq}} = - {{\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)}^{2}}{{f}_{{1,i}}} + \tau {{e}^{{ - \frac{{\Delta t}}{\tau }}}}\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right){{L}_{i}}({{{\mathbf{f}}}_{1}}),$$
(33)

where

$${{D}_{{1,i}}} = \left( {\frac{\partial }{{\partial {{t}_{1}}}} + {{{\mathbf{c}}}_{i}} \cdot \frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}}} \right)$$

and \({{L}_{i}}\) is the collision operator for Eqs. (4)(12) linearized with respect to the local Maxwellian. Since we only consider the flows with small Mach numbers, we my use the absolutely Maxwellian distribution instead of the locally Maxwellian distribution; the former distribution is specified by the weights \({{\rho }_{0}}{{w}_{i}}\). In this case, the operator \({{L}_{i}}({{{\mathbf{f}}}_{1}})\) has the form

$${{L}_{i}}({{{\mathbf{f}}}_{1}}) = {{\rho }_{0}}\sum\limits_{jkl = 1}^N {A_{{kl}}^{{ij}}} ({{w}_{k}}{{f}_{{1,l}}} - {{w}_{i}}{{f}_{{1,j}}} + {{f}_{{1,k}}}{{w}_{l}} - {{f}_{{1,i}}}{{w}_{j}}).$$

By multiplying Eqs. (33) by \({{{\mathbf{c}}}_{i}}\) and summing over \(i\), we obtain equations of momentum variation for inviscid medium (the Euler equation)

$$\frac{\partial }{{\partial {{t}_{1}}}}{{\rho }_{0}}{\mathbf{u}} + \frac{\partial }{{\partial {{{\mathbf{r}}}_{{\mathbf{1}}}}}} \cdot ({{\rho }_{0}}{\mathbf{uu}} + {{\rho }_{0}}{{\theta }_{0}}) = 0.$$
(34)

For the terms of order \(O({{\epsilon }^{2}})\), we obtain

$$O({{\varepsilon }^{2}})\,:\quad \Delta t\frac{\partial }{{\partial {{t}_{2}}}}f_{i}^{{eq}} + \Delta t{{D}_{{1,i}}}{{f}_{{1,i}}} + \frac{{\Delta {{t}^{2}}}}{2}D_{{1,i}}^{2}f_{i}^{{eq}} = \; \ldots ,$$
(35)

where the ellipsis denotes the second-order terms in \(\epsilon \) that appear on the right-hand side; their explicit form is not required here. Now multiply Eqs. (35) by \({{{\mathbf{c}}}_{i}}\) and sum them over \(i\) to obtain

$$\frac{\partial }{{\partial {{t}_{2}}}}{{\rho }_{0}}{\mathbf{u}} + \frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}} \cdot {{{\mathbf{P}}}_{1}} + \frac{{\Delta t}}{2}\frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}} \cdot \sum\limits_i {{{{\mathbf{c}}}_{i}}} {{{\mathbf{c}}}_{i}}{{D}_{{1,i}}}f_{i}^{{eq}} = 0,$$
(36)

where \({{{\mathbf{P}}}_{1}} = \sum\nolimits_i {{{{\mathbf{c}}}_{i}}} {{{\mathbf{c}}}_{i}}{{f}_{{1,i}}}\). Sum Eqs. (34) and (36) to obtain

$$\left( {\epsilon \frac{\partial }{{\partial {{t}_{1}}}} + {{\epsilon }^{2}}\frac{\partial }{{\partial {{t}_{2}}}}} \right){{\rho }_{0}}{\mathbf{u}} + \frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}}\left( {\epsilon ({{\rho }_{0}}{\mathbf{uu}} + {{\rho }_{0}}{{\theta }_{0}}) + {{\epsilon }^{2}}{{{\mathbf{P}}}_{1}} + {{\epsilon }^{2}}\frac{{\Delta t}}{2}\sum\limits_i {{{{\mathbf{c}}}_{i}}} {{{\mathbf{c}}}_{i}}{{D}_{{1,i}}}f_{i}^{{eq}}} \right) = 0;$$

now return to the original variables \(t\) and \({\mathbf{r}}\) to obtain (up to small terms \(O\left( {{{\epsilon }^{3}}} \right)\)) the equation

$$\frac{\partial }{{\partial t}}({{\rho }_{0}}{\mathbf{u}}) + \frac{\partial }{{\partial {\mathbf{r}}}} \cdot \left( {{{\rho }_{0}}{\mathbf{uu}} + {{\rho }_{0}}{{\theta }_{0}} + \epsilon {{{\mathbf{P}}}_{1}} + \epsilon \frac{{\Delta t}}{2}\sum\limits_i {{{{\mathbf{c}}}_{i}}} {{{\mathbf{c}}}_{i}}{{D}_{{1,i}}}f_{i}^{{eq}}} \right) = 0,$$
(37)

where the third and the fourth terms in the second term in (37) are responsible for viscous corrections to the Euler equation, which should be found. To find \({{{\mathbf{P}}}_{1}}\), we need expressions for \({{f}_{{1,i}}}\). The total derivative of the locally Maxwellian distribution in (33) in the case of small Mach numbers up to orders \(O\left( {{{{\text{M}}}^{3}}} \right)\) and incompressible flows is (see [23])

$${{\rho }_{0}}{{w}_{i}}\frac{{{{{\mathbf{c}}}_{i}}{{{\mathbf{c}}}_{i}}}}{{{{\theta }_{0}}}}:\frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}}{\mathbf{u}};$$

recall that “:” is the tensor convolution operator. Nonequilibrium DFs \({{f}_{{1,i}}}\) should be sought in the form (see [23, 29])

$${{f}_{{1,i}}} = {{a}_{i}}\frac{{{{{\mathbf{c}}}_{i}}{{{\mathbf{c}}}_{i}}}}{{{{\theta }_{0}}}}:\frac{\partial }{{\partial {{{\mathbf{r}}}_{1}}}}{\mathbf{u}},$$

where the coefficients \({{a}_{i}}\) are the same for the indices \(i\) corresponding to the velocities \({{{\mathbf{c}}}_{i}}\) for which the kinetic energy of particles is the same; it is clear that there are three different coefficients \({{a}_{i}}\). From Eq. (33), we obtain for the coefficient \({{a}_{1}}\), which corresponds to the velocities \( \pm 1\), \( \pm 2\),

$${{a}_{1}} = - \frac{{\frac{1}{9}{{\rho }_{0}}\Delta t}}{{{{{\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)}}^{2}} + \frac{4}{9}\tau {{\rho }_{0}}{{e}^{{ - \frac{{\Delta t}}{\tau }}}}\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)\alpha }};$$

similarly, for the coefficient \({{a}_{3}}\), which corresponds to the velocities \( \pm 3, \pm 4\), we have

$${{a}_{3}} = - \frac{{\frac{1}{{12}}{{\rho }_{0}}\Delta t}}{{{{{\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)}}^{2}} + \frac{1}{9}\tau {{\rho }_{0}}{{e}^{{ - \frac{{\Delta t}}{\tau }}}}\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)(\gamma + 4\beta + 4\lambda )}};$$

the coefficient \({{a}_{0}}\) corresponding to the zero velocity is zero. For convenience, we assume below that \({{\rho }_{0}} = 1\).

As has been shown above, the viscous corrections to the stress tensor \({{{\mathbf{P}}}_{1}}\) depend on the nonequilibrium DFs \({{f}_{{1,i}}}\); i.e., \({{{\mathbf{P}}}_{1}} = \sum\nolimits_i {{{f}_{{1,i}}}} {{{\mathbf{c}}}_{i}}{{{\mathbf{c}}}_{i}}\). Consider in more detail the viscous terms

$$\epsilon \frac{\partial }{{\partial {\mathbf{r}}}} \cdot {{{\mathbf{P}}}_{1}} = \epsilon \sum\limits_\sigma {\frac{\partial }{{\partial {{r}_{\sigma }}}}} {{P}_{{1,\eta \sigma }}} = \epsilon \sum\limits_\sigma {\frac{\partial }{{\partial {{r}_{\sigma }}}}} {\kern 1pt} \sum\limits_i \,{{f}_{{1,i}}}{{c}_{{i\eta }}}{{c}_{{i\sigma }}} = \theta _{0}^{{ - 1}}\sum\limits_{\sigma \kappa w} {\sum\limits_i {{{a}_{i}}} } {{c}_{{i\eta }}}{{c}_{{i\sigma }}}{{c}_{{i\kappa }}}{{c}_{{iw}}}\frac{{{{\partial }^{2}}}}{{\partial {{r}_{\kappa }}\partial {{r}_{\sigma }}}}{{u}_{w}},$$

where \(\sigma \), \(\eta \), \(\kappa \), and \(w\) are equal to \(x\) or \(y\), and we also denote \({{r}_{x}} = x\) and \({{r}_{y}} = y\). Recall that the vectors \({{{\mathbf{c}}}_{i}}\) have the form \(({{e}_{{ix}}},{{e}_{{iy}}})c = ({{e}_{{ix}}},{{e}_{{iy}}})\sqrt {3{{\theta }_{0}}} \), where \({{e}_{{ix}}}\) and \({{e}_{{iy}}}\) take the values \(0\), \( \pm 1\). Hence, we have, for example, that

$$\begin{gathered} \epsilon \frac{\partial }{{\partial x}}{{P}_{{1,xx}}} + \epsilon \frac{\partial }{{\partial y}}{{P}_{{1,xy}}} = 2(9{{\theta }_{0}}){{a}_{1}}\frac{{{{\partial }^{2}}{{u}_{x}}}}{{\partial {{x}^{2}}}} + 4(9{{\theta }_{0}}){{a}_{3}}\left( {\frac{{{{\partial }^{2}}}}{{\partial x\partial y}}{{u}_{y}} + \frac{{{{\partial }^{2}}}}{{\partial {{y}^{2}}}}{{u}_{x}}} \right) \\ = \;2(9{{\theta }_{0}}){{a}_{1}}\frac{{{{\partial }^{2}}{{u}_{x}}}}{{\partial {{x}^{2}}}} + 4(9{{\theta }_{0}}){{a}_{3}}\left( {\frac{{{{\partial }^{2}}}}{{\partial x\partial y}}{{u}_{y}} + \frac{{{{\partial }^{2}}}}{{\partial {{y}^{2}}}}{{u}_{x}}} \right) - 4(9{{\theta }_{0}}){{a}_{3}}\frac{\partial }{{\partial x}}\left( {\frac{\partial }{{\partial x}}{{u}_{x}} + \frac{\partial }{{\partial y}}{{u}_{y}}} \right) \\ = \;9{{\theta }_{0}}(2{{a}_{1}} - 4{{a}_{3}})\frac{{{{\partial }^{2}}}}{{\partial {{x}^{2}}}}{{u}_{x}} + 4(9{{\theta }_{0}}){{a}_{3}}\frac{{{{\partial }^{2}}}}{{\partial {{y}^{2}}}}{{u}_{x}}; \\ \end{gathered} $$

the last expression implies that the viscous terms have the same form as in the Navier–Stokes equations if

$${{a}_{1}} = 4{{a}_{3}},$$

which is equivalent to (17); however, the viscosity of scheme (27)–(29) is no longer given by formula (18).

The terms \(\epsilon \frac{{\Delta t}}{2}\frac{\partial }{{\partial {\mathbf{r}}}}\sum\nolimits_i {{{{\mathbf{c}}}_{i}}} {{{\mathbf{c}}}_{i}}{{D}_{{i,1}}}f_{i}^{{eq}}\) were considered in the previous work [23], and they are equal to \({{\rho }_{0}}{{\theta }_{0}}\frac{{\Delta t}}{2}\left( {\frac{{{{\partial }^{2}}}}{{\partial {{x}^{2}}}} + \frac{{{{\partial }^{2}}}}{{\partial {{y}^{2}}}}} \right){\mathbf{u}}\).

Thus, the viscosity is given by the formula

$$\nu = \frac{{{{\theta }_{0}}\Delta t}}{{{{{\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)}}^{2}} + \frac{4}{9}\tau {{\rho }_{0}}{{e}^{{ - \frac{{\Delta t}}{\tau }}}}\left( {1 - {{e}^{{ - \frac{{\Delta t}}{\tau }}}}} \right)\alpha }} - \frac{{{{\theta }_{0}}\Delta t}}{2},\quad \tau = \nu {\text{/}}{{\theta }_{0}},$$

and additionally the following condition must be fulfilled:

$$4\alpha = \gamma + 4\beta + 4\lambda .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, O.V. A Discrete Nine-Velocity Model of the Boltzmann Equation: Solution in the Form of Wild Sum and Applications to Simulating Incompressible Flows. Comput. Math. and Math. Phys. 62, 685–699 (2022). https://doi.org/10.1134/S096554252204008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252204008X

Keywords:

Navigation