Skip to main content
Log in

Scalings in diffusion-driven reactionA+B→C: Numerical simulations by lattice BGK models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We are interested in applying lattice BGK models to the diffusion-driven reactive systemA+B→C, which was investigated by Gálfi and Rácz with an asymptotic analysis and by Chopard and Droz with a cellular automaton model. The lattice BGK model is free from noise and flexible for various applications. We derive the general reaction-diffusion equations for the lattice BGK models under the assumption of local diffusive equilibrium. Two fourth-order terms are derived and verified by numerical simulations. The motivation of this study is to compare the lattice BGK results with existing results before we apply the models to more complicated systems. The scalings concern two exponents α and β appearing in the production rate ofC componentR(x, t)∼t −β G(xt −α). We find the same values for α=1/6 and β=2/3 as Gálfi and Rácz found at the long time limit. AGaussian-like function forG is numerically obtained, which confirms a similar result of Gálfi and Rácz. On the one hand, when compared with the asymptotic analysis, lattice BGK models are easy to apply to cases where no analytic or asymptotic results exist; on the other hand, when compared with cellular automaton models, lattice BGK models are faster, simpler, and more accurate. The discrepancy of the results between the cellular automaton model and the lattice BGK models for the exponents comes from the role of the intrinsic fluctuation. Once the time and space correlation of stochastic stirring is given, we can incorporate a random fluctuating term in lattice BGK models. The Schlögl model is also tested, showing the ability of lattice BGK models for generating Turing patterns, which may stimulate further interesting investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Benzi, S. Succi, and M. Vergassola,Phys. Rep. 222(3):145–197 (1992).

    Google Scholar 

  2. P. Bhatnagar, E. P. Gross, and M. K. Krook,Phys. Rev. 94:511 (1954).

    Google Scholar 

  3. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases, 3rd. ed. (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  4. H. D. Chen, S. Y. Chen, and W. Matthaeus,Phys. Rev. A 45:R5339 (1992).

    Google Scholar 

  5. B. Chopard and M. Droz,Europhys. Lett. 15(4):459 (1991).

    Google Scholar 

  6. D. Dab, J. P. Boon, and Y. X. Li,Phys. Rev. Lett. 66(19):2535 (1991).

    Google Scholar 

  7. D. Dab, A. Lawniczak, J. P. Boon, and R. Kapral,Phys. Rev. Lett. 64(20):2462 (1990).

    Google Scholar 

  8. D. d'Humières, P. Lallemand, and Y. H. Qian,C.R. Acad. Sci. Paris 308:585 (1989).

    Google Scholar 

  9. G. D. Doolen, ed.,Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, Reading, Massachusetts, 1989).

    Google Scholar 

  10. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649 (1987).

    Google Scholar 

  11. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  12. L. Gálfi and Z. Rácz,Phys. Rev. A 38:3151 (1988).

    Google Scholar 

  13. R. Gatignol.Théorie Cinétique des Gaz à répartition discrète de Vitesses (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  14. G. Giacomin,Stoch. Proc. Appl. 51:25 (1994).

    Google Scholar 

  15. B. Hasslacher, R. Kapral, and A. Lawniczak,Chaos 3(1):7 (1993).

    Google Scholar 

  16. S. Havlin, M. Araujo, H. Larralde, and H. E. Stanley,Physica A 191:143 (1992).

    Google Scholar 

  17. F. J. Higuera and J. Jimenez,Europhys. Lett. 9(7):663–668 (1989).

    Google Scholar 

  18. L. Kadanoff, G. McNamara, and G. Zanetti,Complex Systems 1:791 (1987).

    Google Scholar 

  19. R. Kapral, A. Lawniczak, and P. Masiar,Phys. Rev. Lett. 66(19):2539 (1991).

    Google Scholar 

  20. R. Kapral, A. Lawniczak, and P. Masiar,J. Chem. Phys. 96(4):2762 (1992).

    Google Scholar 

  21. A. J. Koch and H. Meinhardt,Rev. Mod. Phys. 66:1481 (1994).

    Google Scholar 

  22. B. P. Lee and J. Cardy,Phys. Rev. E 50(5):R3287 (1994).

    Google Scholar 

  23. K. Maginu,J. Math. Biosci. 21:17 (1975).

    Google Scholar 

  24. G. R. McNamara and G. Zanetti,Phys. Rev. Lett. 61:2332 (1988).

    Google Scholar 

  25. J. D. Murray,Mathematical Biology (Springer, New York, 1989).

    Google Scholar 

  26. Conference on Models of Nonclassic Reaction Rates,J. Stat. Phys. 65 (1991).

  27. S. Ponce Dawson, S. Y. Chen, and G. D. Doolen,J. Chem. Phys. 98(2):1514 (1993).

    Google Scholar 

  28. Y. H. Qian, Lattice gas and lattice kinetic theory applied to the Navier-Stokes equation, Ph.D. thesis, Ecole Normale Supérieure and University of Paris 6 (1990).

  29. Y. H. Qian, unpublished (1990).

  30. Y. H. Qian, D. d'Humières, and P. Lallemand,Europhys. Lett. 17(6):479–484 (1992).

    Google Scholar 

  31. Y. H. Qian and S. A. Orszag,Europhys. Lett. 21(3):255–259 (1993).

    Google Scholar 

  32. F. Schlögl, C. Escher, and R. S. Berry,Phys. Rev. A 27:2698 (1983).

    Google Scholar 

  33. E. E. Sel'kov,J. Biochem. 4:79 (1968).

    Google Scholar 

  34. J. R. Weimar, D. Dab, J. P. Boon, and S. Succi,Europhys. Lett. 20(7):627 (1993).

    Google Scholar 

  35. Bramson and Lebowitz,J. Stat. Phys. 62(1/2):297 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y.H., Orszag, S.A. Scalings in diffusion-driven reactionA+B→C: Numerical simulations by lattice BGK models. J Stat Phys 81, 237–253 (1995). https://doi.org/10.1007/BF02179978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179978

Key Words

Navigation