Skip to main content
Log in

Dynamical density functional theory for the diffusion of injected Brownian particles

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

While the theory of diffusion of a single Brownian particle in confined geometries is well-established by now, we discuss here the theoretical framework necessary to generalize the theory of diffusion to dense suspensions of strongly interacting Brownian particles. Dynamical density functional theory (DDFT) for classical Brownian particles represents an ideal tool for this purpose. After outlining the basic ingredients to DDFT we show that it can be readily applied to flowing suspensions with time-dependent particle sources. Particle interactions lead to considerable layering in the mean density profiles, a feature that is absent in the trivial case of noninteracting, freely diffusing particles. If the particle injection rate varies periodically in time with a suitable frequency, a resonance in the layering of the mean particle density profile is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  2. C. Lutz, M. Kollmann, C. Bechinger, Phys. Rev. Lett. 93, 026001 (2004)

    Article  ADS  Google Scholar 

  3. C. Kreuter, U. Siems, P. Nielaba, P. Leiderer, A. Erbe, Eur. Phys. J. Special Topics 222, 2923 (2013)

    Article  ADS  Google Scholar 

  4. M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)

    Article  ADS  Google Scholar 

  5. J. Hansen, I. McDonald, Theory of Simple Liquids, third edition (Academic Press, 2005)

  6. Y. Tsori, P.-G. de Gennes, EPL 66, 599 (2004)

    Article  ADS  Google Scholar 

  7. A. Sengupta, T. Kruppa, H. Löwen, Phys. Rev. E 83, 031914 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.J. Archer, R. Evans, J. Chem. Phys. 121, 4246 (2004)

    Article  ADS  Google Scholar 

  9. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Español, H. Löwen, J. Chem. Phys. 131, (2009)

  11. H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61, 665 (2012)

    Article  ADS  Google Scholar 

  12. P. Zhang, L. Cai, Z.-J. Lian, X.-Y. Pan, Chin. Phys. Lett. 27, 080504 (2010)

    Article  ADS  Google Scholar 

  13. H. Löwen, Phys. Rep. 237, 249 (1994)

    Article  ADS  Google Scholar 

  14. M.H. Yamani, M. Oettel, Phys. Rev. E 88, 022301 (2013)

    Article  ADS  Google Scholar 

  15. J. Reinhardt, F. Weysser, J.M. Brader, EPL 102, 28011 (2013)

    Article  ADS  Google Scholar 

  16. T. Neuhaus, M. Schmiedeberg, H. Löwen, New J. Phys. 15, 073013 (2013)

    Article  ADS  Google Scholar 

  17. I. Santamaría-Holek, Z. Grzywna, J. Rubi, Eur. Phys. J. Special Topics 222, 129 (2013)

    Article  ADS  Google Scholar 

  18. A.J. Archer, P. Hopkins, M. Schmidt, Phys. Rev. E 75, 040501 (2007)

    Article  ADS  Google Scholar 

  19. A.L. Yarin, Annu. Rev. Fluid Mech. 38, 159 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.C. Jenkins, S.U. Egelhaaf, J. Phys.: Condens. Matter 20, 404220 (2008)

    Google Scholar 

  21. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. M. Heinen, E. Allahyarov, H. Löwen, J. Comput. Chem. 35, 275 (2014)

    Article  Google Scholar 

  23. R.D. Rohrmann, A. Santos, Phys. Rev. E 76, 051202 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Adda-Bedia, E. Katzav, D. Vella, J. Chem. Phys. 129, 144506 (2008)

    Article  ADS  Google Scholar 

  25. M. Plischke, D. Henderson, J. Chem. Phys. 84, 2846 (1986)

    Article  ADS  Google Scholar 

  26. R. Kjellander, S. Sarman, Mol. Phys. 74, 665 (1991)

    Article  ADS  Google Scholar 

  27. A. Ivlev, H. Löwen, G. Morfill, C.P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-resolved Studies of Classical Liquids and Solids, Vol. 5, Series in Soft Condensed Matter (World Scientific, Singapore [u.a.], 2012)

  28. K. Nygård, R. Kjellander, S. Sarman, S. Chodankar, E. Perret, J. Buitenhuis, J.F. van der Veen, Phys. Rev. Lett. 108, 037802 (2012)

    Article  ADS  Google Scholar 

  29. M. Engel, J.A. Anderson, S.C. Glotzer, M. Isobe, E.P. Bernard, W. Krauth, Phys. Rev. E 87, 042134 (2013)

    Article  ADS  Google Scholar 

  30. J. Kolafa, M. Rottner, Mol. Phys. 104, 3435 (2006)

    Article  ADS  Google Scholar 

  31. T. Franosch, S. Lang, R. Schilling, Phys. Rev. Lett. 109, 240601 (2012)

    Article  ADS  Google Scholar 

  32. A. Reinmüller, E.C. Oğuz, R. Messina, H. Löwen, H.J. Schöpe, T. Palberg, J. Chem. Phys. 136, 164505 (2012)

    Article  ADS  Google Scholar 

  33. A. Sengupta, S. van Teeffelen, H. Löwen, Phys. Rev. E 80, 031122 (2009)

    Article  ADS  Google Scholar 

  34. K. Lichtner, S.H.L. Klapp, EPL 92, 40007 (2010)

    Article  ADS  Google Scholar 

  35. D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft. Matter 10, 1784 (2014)

    Article  ADS  Google Scholar 

  36. M. Rex, H. Löwen, Phys. Rev. Lett. 101, 148302 (2008)

    Article  ADS  Google Scholar 

  37. M. Rex, H. Löwen, Eur. Phys. J. E 28, 139 (2009)

    Article  Google Scholar 

  38. J.-L. Barrat, H. Xu, J. Phys.-Condes. Matter 2, 9445 (1990)

    Article  ADS  Google Scholar 

  39. H. Xu, M. Baus, J. Phys.-Condes. Matter 2, 5885 (1990)

    Article  ADS  Google Scholar 

  40. S. van Teeffelen, C. N. Likos, H. Löwen, Phys. Rev. Lett. 100, 108302 (2008)

    Article  ADS  Google Scholar 

  41. T. Neuhaus, A. Härtel, M. Marechal, M. Schmiedeberg, H. Löwen, Eur. Phys. J. Special Topics 223, 373 (2014)

    Article  ADS  Google Scholar 

  42. K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88, 245701 (2002)

    Article  ADS  Google Scholar 

  43. K. Lichtner, A.J. Archer, S.H.L. Klapp, J. Chem. Phys. 136, 024502 (2012)

    Article  ADS  Google Scholar 

  44. M. Rex, H.H. Wensink, H. Löwen, Phys. Rev. E 76, 021403 (2007)

    Article  ADS  Google Scholar 

  45. R. Wittkowski, H. Löwen, H.R. Brand, Phys. Rev. E 82, 031708 (2010)

    Article  ADS  Google Scholar 

  46. R. Wittkowski, H. Löwen, H.R. Brand, Phys. Rev. E 84, 041708 (2011)

    Article  ADS  Google Scholar 

  47. H. Löwen, J. Phys.: Condens. Matter 22, 364105 (2010)

    Google Scholar 

  48. R. Wittkowski, H. Löwen, Molec. Phys. 109, 2935 (2011)

    Article  ADS  Google Scholar 

  49. R. Wittkowski, H. Löwen, H.R. Brand, J. Chem. Phys. 137, 224904 (2012)

    Article  ADS  Google Scholar 

  50. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)

    Article  ADS  Google Scholar 

  51. H.H. Wensink, H. Löwen, Phys. Rev. E 78, 031409 (2008)

    Article  ADS  Google Scholar 

  52. A.M. Menzel, H. Löwen, Phys. Rev. Lett. 110, 055702 (2013)

    Article  ADS  Google Scholar 

  53. F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)

    Article  ADS  Google Scholar 

  54. X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys. Rev. E 88, 032304 (2013)

    Article  ADS  Google Scholar 

  55. S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101 (2008)

    Article  Google Scholar 

  56. M.B. Wan, C.J. Olson Reichhardt, Z. Nussinov, C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008)

    Article  ADS  Google Scholar 

  57. C.A. Brackley, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 109, 168103 (2012)

    Article  ADS  Google Scholar 

  58. P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)

    Article  ADS  Google Scholar 

  59. M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)

    Article  ADS  Google Scholar 

  60. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. 109, 14308 (2012)

    Article  ADS  Google Scholar 

  61. I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)

    Article  ADS  Google Scholar 

  62. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  63. J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)

    Article  ADS  Google Scholar 

  64. J. Bialké, H. Löwen, T. Speck, EPL 103, 30008 (2013)

    Article  ADS  Google Scholar 

  65. J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)

    Article  ADS  Google Scholar 

  66. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  67. J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)

    Article  ADS  Google Scholar 

  68. J. Bialké, H. Löwen, T. Speck, EPL 103, 30008 (2013)

    Article  ADS  Google Scholar 

  69. J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löwen, H., Heinen, M. Dynamical density functional theory for the diffusion of injected Brownian particles. Eur. Phys. J. Spec. Top. 223, 3113–3127 (2014). https://doi.org/10.1140/epjst/e2014-02322-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02322-8

Keywords

Navigation