Skip to main content
Log in

Rigorous mean-field model for coherent-potential approximation: Anderson model with free random variables

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A model of a randomly disordered system with site-diagonal random energy fluctuations is introduced. It is an extension of Wegner'sn-orbital model to arbitrary eigenvalue distribution in the electronic level space. The new feature is that the random energy values are not assumed to be independent at different sites, but free. Freeness of random variables is an analog of the concept of independence for noncommuting random operators. A possible realization is the ensemble of randomly rotated matrices at different lattice sites. The one- and two-particle Green functions of the proposed Hamiltonian are calculated exactly. The eigenstates are extended and the conductivity is novanishing everywhere inside the band. The long-range behavior and the zero-frequency limit of the two-particle Green function are universal with respect to the eigenvalue distribution in the electronic level space. The solutions solve the CPA equation for the one- and two-particle Green function of the corresponding Anderson model. Thus our (multisite) model is a rigorous mean-field model for the (single-site) CPA. We show how the Lloyd model is included in our model and treat various kinds of noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson,Phys. Rev. 109:1492 (1958).

    Google Scholar 

  2. P. Lloyd,J. Phys. C 2:1717 (1969).

    Google Scholar 

  3. E. N. Economou,Green's Function in Quantum Physics (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  4. I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur,Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).

    Google Scholar 

  5. P. Soven,Phys. Rev. 156:809 (1967).

    Google Scholar 

  6. D. V. Taylor,Phys. Rev. 156:1017 (1967).

    Google Scholar 

  7. B. Velický,Phys. Rev. 184:614 (1969).

    Google Scholar 

  8. F. Wegner,Phys. Rev. B 19:783 (1979).

    Google Scholar 

  9. A. M. Khorunzhy and L. A. Pastur,Commun. Math. Phys. 153:605 (1993).

    Google Scholar 

  10. E. P. Wigner,Ann. Math. 62:548 (1955);67:325 (1958).

    Google Scholar 

  11. L. Arnold,J. Math. Anal. Appl. 20:262 (1967).

    Google Scholar 

  12. D. Voiculescu, inLecture Notes in Mathematics, No. 1132 (Springer, Berlin, 1985), p. 556.

    Google Scholar 

  13. D. Voiculescu,J. Funct Anal. 66:323 (1986).

    Google Scholar 

  14. D. Voiculescu,Invent. Math. 104:201 (1991).

    Google Scholar 

  15. D. Voiculescu, K. Dykema, and A. Nica,Free Random Variables (American Mathematical Society, Providence, Rhode Island, 1992).

    Google Scholar 

  16. D. Voiculescu,Commun. Math. Phys. 155:71 (1993);Invent. Math., to appear.

    Google Scholar 

  17. R. Speicher,Prob. Theory Related Fields 84:141 (1990).

    Google Scholar 

  18. B. Kümmerer and R. Speicher,J. Funct. Anal. 103:372 (1992).

    Google Scholar 

  19. R. Speicher,Math. Ann. 298:611 (1994).

    Google Scholar 

  20. R. Speicher,RIMS 29:731 (1993).

    Google Scholar 

  21. P. Neu and R. Speicher,J. Phys. A: Math. Gen. 28:L79 (1995).

    Google Scholar 

  22. P. Neu and R. Speicher,Z. Phys. B 92:399 (1993).

    Google Scholar 

  23. H. MaassenJ. Funct. Anal. 106:409 (1992).

    Google Scholar 

  24. H. Bercovici and D. Voiculescu,Indiana U. Math. J. 42:733 (1993).

    Google Scholar 

  25. L. A. Pastur,Teor. Mat. Fiz. 10:102 (1973).

    Google Scholar 

  26. P. Neu and R. Speicher,Z. Phys. B 95:101 (1994).

    Google Scholar 

  27. R. L. Hudson and K. R. Parthasarathy,Commun. Math. Phys. 93:301 (1984).

    Google Scholar 

  28. U. Frisch and R. Bourret,J. Math. Phys. 11:364 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neu, P., Speicher, R. Rigorous mean-field model for coherent-potential approximation: Anderson model with free random variables. J Stat Phys 80, 1279–1308 (1995). https://doi.org/10.1007/BF02179871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179871

Key Words

Navigation