Skip to main content

Embedded GOE for Spinless Fermion Systems: EGOE(2) and EGOE(k)

  • Chapter
Embedded Random Matrix Ensembles in Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 884))

  • 1586 Accesses

Abstract

Embedded Gaussian orthogonal ensemble of random matrices for spinless fermion systems generated by random two-body interactions [EGOE(2)] is defined and a method for its construction is described. One-point function giving eigenvalue density and some aspects of the two-point function that generates level fluctuations for the more general EGOE(k), generated by a random k-body interaction, are derived in detail using binary correlation approximation (BCA). In the dilute limit, one-point function is a Gaussian and as number of particles m increases from m=k, eigenvalue densities exhibit semi-circle to Gaussian transition with m=2k being the transition point. Secondly, EGOE(k) exhibits average-fluctuation separation as m increases and also non-zero cross correlations between spectra with different particle numbers. In addition, asymptotic form of the transition strength densities, that are also two-point functions, generated by a transition operator, is established using BCA to be a bivariate Gaussian. Then, smoothed transition strength sums, being marginal densities divided by the state density, will be ratio of two Gaussians. Thus, EGOE differs from GOE both in one- and two-point functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. French, S.S.M. Wong, Validity of random matrix theories for many-particle systems. Phys. Lett. B 33, 449–452 (1970)

    Article  ADS  Google Scholar 

  2. O. Bohigas, J. Flores, Two-body random Hamiltonian and level density. Phys. Lett. B 34, 261–263 (1971)

    Article  ADS  Google Scholar 

  3. K.K. Mon, J.B. French, Statistical properties of many-particle spectra. Ann. Phys. (N.Y.) 95, 90–111 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  4. V.K.B. Kota, SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices. J. Math. Phys. 46, 033514 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Z. Pluhar̆, H.A. Weidenmüller, Symmetry properties of the k-body embedded unitary Gaussian ensemble of random matrices. Ann. Phys. (N.Y) 297, 344–362 (2002)

    Article  ADS  MATH  Google Scholar 

  6. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Random matrix physics: spectrum and strength fluctuations. Rev. Mod. Phys. 53, 385–479 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. V.K.B. Kota, Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems. Phys. Rep. 347, 223–288 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. J.M.G. Gómez, K. Kar, V.K.B. Kota, R.A. Molina, A. Relaño, J. Retamosa, Many-body quantum chaos: recent developments and applications to nuclei. Phys. Rep. 499, 103–226 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ph. Jacquod, D.L. Shepelyansky, Emergence of quantum chaos in finite interacting Fermi systems. Phys. Rev. Lett. 79, 1837–1840 (1997)

    Article  ADS  Google Scholar 

  10. V.V. Flambaum, F.M. Izrailev, Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates. Phys. Rev. E 56, 5144–5159 (1997)

    Article  ADS  Google Scholar 

  11. Y. Alhassid, Statistical theory of quantum dots. Rev. Mod. Phys. 72, 895–968 (2000)

    Article  ADS  Google Scholar 

  12. A. Relaño, R.A. Molina, J. Retamosa, 1/f noise in the two-body random ensemble. Phys. Rev. E 70, 017201 (2004)

    Article  ADS  Google Scholar 

  13. A. Volya, Emergence of symmetry from random n-body interactions. Phys. Rev. Lett. 100, 162501 (2008)

    Article  ADS  Google Scholar 

  14. K.K. Mon, Ensemble-averaged eigenvalue distributions for k-body interactions in many-particle systems, B.A. Dissertation, Princeton University (1973)

    Google Scholar 

  15. F.S. Chang, J.B. French, T.H. Thio, Distribution methods for nuclear energies, level densities and excitation strengths. Ann. Phys. (N.Y.) 66, 137–188 (1971)

    Article  ADS  Google Scholar 

  16. S. Tomsovic, Bounds on the time-reversal non-invariant nucleon-nucleon interaction derived from transition-strength fluctuations, Ph.D. Thesis, University of Rochester, Rochester, New York (1986)

    Google Scholar 

  17. M. Vyas, Some studies on two-body random matrix ensembles, Ph.D. Thesis, M.S. University of Baroda, India (2012)

    Google Scholar 

  18. A. Gervois, Level densities for random one- and two-body potentials. Nucl. Phys. A 184, 507–532 (1972)

    Article  ADS  Google Scholar 

  19. L. Benet, T. Rupp, H.A. Weidenmüller, Nonuniversal behavior of the k-body embedded Gaussian unitary ensemble of random matrices. Phys. Rev. Lett. 87, 010601 (2001)

    Article  ADS  Google Scholar 

  20. L. Benet, T. Rupp, H.A. Weidenmüller, Spectral properties of the k-body embedded Gaussian ensembles of random matrices. Ann. Phys. (N.Y.) 292, 67–94 (2001)

    Article  ADS  MATH  Google Scholar 

  21. H. Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1974)

    Google Scholar 

  22. C. Bloch, Statistical nuclear theory, in Physique Nucléaire, ed. by C. Dewitt, V. Gillet (Gordon and Breach, New York, 1969), pp. 303–412

    Google Scholar 

  23. L. Muñoz, E. Faleiro, R.A. Molina, A. Relaño, J. Retamosa, Spectral statistics in noninteracting many-particle systems. Phys. Rev. E 73, 036202 (2006)

    Article  ADS  Google Scholar 

  24. V.K.B. Kota, R.U. Haq, Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  25. L. Benet, H.A. Weidenmüller, Review of the k-body embedded ensembles of Gaussian random matrices. J. Phys. A 36, 3569–3594 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. M. Srednicki, Spectral statistics of the k-body random interaction model. Phys. Rev. E 66, 046138 (2002)

    Article  ADS  Google Scholar 

  27. J.B. French, V.K.B. Kota, A. Pandey, S. Tomsovic, Statistical properties of many-particle spectra VI. Fluctuation bounds on N-N T-noninvariance. Ann. Phys. (N.Y.) 181, 235–260 (1988)

    Article  ADS  Google Scholar 

  28. G. Szegő, Orthogonal Polynomials, Colloquium Publications, vol. 23 (Am. Math. Soc., Providence, 2003)

    Google Scholar 

  29. J.P. Draayer, J.B. French, S.S.M. Wong, Spectral distributions and statistical spectroscopy: I General theory. Ann. Phys. (N.Y.) 106, 472–502 (1977)

    Article  ADS  Google Scholar 

  30. V.K.B. Kota, D. Majumdar, Bivariate distributions in statistical spectroscopy studies: IV. Interacting particle Gamow-Teller strength densities and β-decay rates of fp-shell nuclei for presupernova stars. Z. Phys. A 351, 377–383 (1995)

    Article  ADS  Google Scholar 

  31. V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, Statistics of electromagnetic transitions as a signature of chaos in many-electron atoms. Phys. Rev. A 58, 230–237 (1998)

    Article  ADS  Google Scholar 

  32. J.J.M. Verbaarschot, M.R. Zirnbauer, Replica variables, loop expansion, and spectral rigidity of random-matrix ensembles. Ann. Phys. (N.Y.) 158, 78–119 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Papenbrock, Z. Pluhar̆, J. Tithof, H.A. Weidenmüller, Chaos in fermionic many-body systems and the metal-insulator transition. Phys. Rev. E 83, 031130 (2011)

    Article  ADS  Google Scholar 

  34. L.S. Levitov, Delocalization of vibrational modes caused by electric dipole interaction. Phys. Rev. Lett. 64, 547–550 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  35. O. Bohigas, J. Flores, Spacing and individual eigenvalue distributions of two-body random Hamiltonians. Phys. Lett. B 35, 383–387 (1971)

    Article  ADS  Google Scholar 

  36. E. Cota, J. Flores, P.A. Mello, E. Yépez, Level repulsion in the ground-state region of nuclei. Phys. Lett. B 53, 32–34 (1974)

    Article  ADS  Google Scholar 

  37. T.A. Brody, E. Cota, J. Flores, P.A. Mello, Level fluctuations: a general properties of spectra. Nucl. Phys. A 259, 87–98 (1976)

    Article  ADS  Google Scholar 

  38. J. Flores, M. Horoi, M. Mueller, T.H. Seligman, Spectral statistics of the two-body random ensemble revisited. Phys. Rev. E 63, 026204 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kota, V.K.B. (2014). Embedded GOE for Spinless Fermion Systems: EGOE(2) and EGOE(k). In: Embedded Random Matrix Ensembles in Quantum Physics. Lecture Notes in Physics, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-04567-2_4

Download citation

Publish with us

Policies and ethics