Skip to main content
Log in

Percolation of level sets for two-dimensional random fields with lattice symmetry

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let ψ(x),x∈ℝ2, be a random field, which may be viewed as the potential of an incompressible flow for which the trajectories follow the level lines of ψ. Percolation methods are used to analyze the sizes of the connected components of level sets {x:ψ(x)=h} and sets {x:ψ(x)≦h} in several classes of random fields with lattice symmetry. In typical cases there is a sharp transition at a critical value ofh from exponential boundedness for such components to the existence of an unbounded component. In some examples, however, there is a nondegenerate interval of values ofh where components are bounded but not exponentially so, and in other cases each level set may be a single infinite line which visits every region of the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gruzinov, M. B. Isichenko, and Ya. L. Kalda, Two-dimensional turbulent diffusion,Zh. Eksp. Teor. Fiz. 97:476–488 (1990) [Sov. Phys. JETP 70:263–269 (1990)].

    Google Scholar 

  2. M. B. Isichenko, Percolation, statistical topography, and transport in random media,Rev. Mod. Phys. 64:961–1043 (1992).

    Google Scholar 

  3. M. B. Isichenko, Ya. L. Kalda, E. B. Tatarinova, O. V. Tel'kovskaya, and V. V. Yan'kov, Diffusion in a medium with vortex flow,Zh. Eksp. Teor. Fiz. 96:913–925 (1989) [Sov. Phys. JETP 69:517–524 (1989)].

    Google Scholar 

  4. S. A. Trugman and S. Doniach, Vortex dynamics in inhomogeneous superconducting films,Phys. Rev. B 26:3682–3697 (1982).

    Google Scholar 

  5. A. Weinrib, Percolation threshold of a two-dimensional continuum system.Phys. Rev. B 26:1352–1361 (1982).

    Google Scholar 

  6. A. Weinrib and B. I. Halperin, Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns,Phys. Rev. B 26:1362–1368 (1982).

    Google Scholar 

  7. J. M. Ziman, The localization of electrons in ordered and disordered systems, I. Percolation of classical particles,J. Phys. C 1:1532–1538 (1968).

    Google Scholar 

  8. M. Avellaneda, F. Elliot, Jr., and C. Apelian, Trapping, percolation and anomalous diffusion of particles in a two-dimensional random flow,J. Stat. Phys. 72:1227–1304 (1993).

    Google Scholar 

  9. S. A. Molchanov and A. K. Stepanov, Percolation in random fields I, II, III,Teor. Mat. Fiz. 55:246–256, 419–430;67:177–185 (1983) [Theor. Math. Phys. 55:478–484, 592–599;67:434–439 (1983)].

    Google Scholar 

  10. G. Grimmett,Percolation (Springer-Verlag, New York, 1989).

    Google Scholar 

  11. H. Kesten,Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).

    Google Scholar 

  12. L. Russo, On the critical percolation probabilities,Z. Wahrsch. Verw. Gebiete 56:229–237 (1981).

    Google Scholar 

  13. Y. Higuchi, Coexistence of the infinite (*) clusters: A remark on the square lattice site percolation,Z. Wahrsch. Verw. Gebiete 61:75–81 (1982).

    Google Scholar 

  14. M. Aizenmann and D. J. Barsky, Sharpness of the phase transition in percolation models,Commun. Math. Phys. 108:489–526 (1987).

    Google Scholar 

  15. J. M. Hammersley, Percolation processes. Lower bounds for the critical probability,Ann. Math. Stat. 28:790–795 (1957).

    Google Scholar 

  16. M. V. Men'shikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some applications,Itogi Nauki Tekhniki (Ser. Prob. Theory Math. Stat. Theoret. Cybernet.) 24:53–110 (1986) [J. Sov. Math. 42:1766–1810 (1988)].

    Google Scholar 

  17. M. Aizenman and G. Grimmett, Strict monotonicity for critical points in percolation and ferromagnetic models,J. Stat. Phys. 63:817–835 (1991).

    Google Scholar 

  18. K. S. Alexander, Percolation and minimal spanning forests in infinite graphs,Ann. Prob. (1994), to appear.

  19. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction (Springer-Verlag, New York, 1985).

    Google Scholar 

  20. D. Aldous and J. M. Steele, Asymptotics for Euclidean minimal spanning trees on random points,Prob. Theory Rel. Fields 92:247–258 (1992).

    Google Scholar 

  21. R. Pemantle, Choosing a spanning tree for the integer lattice uniformly,Ann. Prob. 19:1559–1574 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, K.S., Molchanov, S.A. Percolation of level sets for two-dimensional random fields with lattice symmetry. J Stat Phys 77, 627–643 (1994). https://doi.org/10.1007/BF02179453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179453

Key Words

Navigation