Skip to main content

Advertisement

Log in

Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on \({\mathbb{Z}^d}\) (\({d \geq 2}\)). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for \({d \geq 3}\)) and the level sets of the Gaussian free field (\({d\geq 3}\)). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489–1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033–1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antal P., Pisztora A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24(2), 1036–1048 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong S., Souganidis P.: Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations in unbounded environments. Journal de Mathematiques Pures et Appliquees 97(5), 460–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis, Pure Applied Mathematics (New York). Wiley, New York (1984)

    MATH  Google Scholar 

  4. Armstrong, S., Tran, H.: Stochastic homogenization of viscous Hamilton–Jacobi equations and application. Anal. PDE 7(8), 1969–2007 (2014)

  5. Beffara V., Duminil-Copin H.: The self-dual point of the two-dimensional random-cluster model is critical for \({q \ge 1}\). Probab. Theory Relat. Fields 153, 511–542 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger N., Biskup M.: Quenched invariance principle for random walk on percolation clusters. Probab. Theory Relat. Fields 137(1–2), 83–120 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Berger N., Gantert N., Peres Y.: The speed of biased random walk on percolation clusters. Probab. Theory Relat. Fields 126(2), 221–242 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodineau T.: Slab percolation for the Ising model. Probab. Theory Relat. Fields 132, 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burton R.M., Keane M.: Density and uniqueness in percolation. Commun. Math. Phys. 121(3), 501–505 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cerny, J., Popov, S.: On the internal distance in the interlacement set. Electron. J. Probab. 17(29), 1–25 (2012)

  11. Comets F., Gantert N., Zeitouni O.: Quenched, annealed and functional large deviations for one dimensional random walks in random environments. Prob. Theory Relat. Fields 118, 65–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Couronné O., Messikh R.J.: Surface order large deviations for 2D FK-percolation and Potts models. Stoch. Process. Appl. 113, 81–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dembo A., Zeitouni O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  14. Drewitz A., Ráth B., Sapozhnikov A.: On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys. 55(8), 083307 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fribergh A., Popov S.: Biased Random Walk on the Interlacement Set. arXiv:1610.02979

  16. Garet O., Marchand R.: Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM Probab. Stat. 8, 169–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giorgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Variational formulas and cocycle solutions for directed polymer and percolation model (2014) (Preprint)

  18. Giorgiou N., Rassoul-Agha F., Seppäläinen T., Yilmaz A.: Ratios of partition functions for the log-gamma polymer. Ann. Probab. 43(5), 2282–2331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Greven A., den Hollander F.: Large deviations for a random walk in a random environment. Ann. Probab. 22, 1381–1428 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grimmett G.R.: Percolation. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Grimmett G.R.: The Random-Cluster Model. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  22. Grimmett G., Marstrand J.: The supercritical phase of percolation is well behaved. Proc. R. Soc. Lond. Ser. A 430, 439–457 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kesten H.: Sums of stationary sequences can not grow slower than linearly. Proc. AMS 49, 205–211 (1975)

    Article  MATH  Google Scholar 

  24. Kipnis C., Varadhan S.R.S.: Limit theorem for additive functionals of reversible Markov chains and application to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  ADS  MATH  Google Scholar 

  25. Kosygina E., Rezakhanlou F., Varadhan S.R.S.: Stochastic homogenization of Hamilton–Jacobi–Bellmann equations. Commun. Pure Appl. Math. 59, 1489–1521 (2006)

    Article  MATH  Google Scholar 

  26. Kozlov S.M.: The averaging effect and walks in inhomogeneous environments. Uspekhi Mat Nayuk, (Russian math surveys) 40, 73–145 (1985)

    ADS  MATH  Google Scholar 

  27. Kubota N.: Large deviations for simple random walks on supercritical percolation clusters. Kodai Math. J. 35(3), 560–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lebowitz J.L., Saleur H.: Percolation in strongly correlated systems. Phys. A 138, 194–205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liggett T., Schonmann R., Stacey A.: Domination by product measures. Ann. Probab. 25, 71–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions P.L., Souganidis P.: Homogenization for viscous Hamilton–Jacobi equations in stationary, ergodic media. Commun. Partial Differ. Equ. 30(1–3), 335–376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions P.L., Souganidis P.: Stochastic homogenization for Hamilton–Jacobi and viscous Hamilton-Jacobi equations with convex nonlinearities-revisited. Commun. Math. Sci. 8(2), 627–637 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mourrat J.-C.: Lyapunov exponents, shape theorems and large deviations for random walks in random potential. ALEA Lat. Am. J. Probab. Math. Stat. 9, 165–211 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Matheiu P., Piatnitski A.: Quenched invariance principle for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly os-cillating random coefficients. In: Random Fields, Vol. I, II (Esztergom, 1979), Volume 27 of Colloquia Mathematica Societatis Janos Bolyai, pp. 835–873. North-Holland, Amsterdam (1981)

  35. Petersen, K.: Ergodic Theory. Corrected Reprint of the 1983 Original. Cambridge Studies in Advanced Mathematics, vol. 2. Cambridge University Press, Cambridge (1989)

  36. Pisztora A.: Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Relat. Fields 104, 427–466 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Procaccia, E.B., Rosenthal, R., Sapozhnikov, A.: Quenched invariance principle for simple random walk on clusters in correlated percolation models. Probab. Theory Relat. Fields. https://doi.org/10.1007/s00440-015-0668-y

  38. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  39. Rodriguez P.-F.: A 0-1 law for the massive Gaussian free field. Probab. Theor. Relat. Fields 169(3–9), 901–930 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rosenbluth, J.: Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU. arXiv:0804.1444v1

  41. Rassoul-Agha F., Seppäläinen T.: Process-level quenched large deviations for random walk in a random environment. Ann. Inst. H. Poincaré Prob. Statist. 47, 214–242 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Rassoul-Agha F., Seppäläinen T., Yilmaz A.: Quenched free energy and large deviations for random walk in random potential. Commun. Pure Appl. Math. 66, 202–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rassoul-Agha F., Seppäläinen T., Yilmaz A.: Variational formulas and disorder regimes of random walks in random potential. Bernoulli 23(1), 405–431 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rodriguez P.-F., Sznitman A.-S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320, 571–601 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Shefield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MathSciNet  Google Scholar 

  46. Sidoravicius V., Sznitman A.S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sznitman A.S.: Shape theorem Lyapunov exponents and large deviations for Brownian motion in a Poissonian potential. Commun. Pure. Appl. Math. 47, 1655–1688 (1994)

    Article  MATH  Google Scholar 

  48. Sznitman A.S.: On the anisotropic walk on the supercritical percolation cluster. Commun. Math. Phys. 240(1-2), 123–148 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Sznitman A.S.: Vacant set of random interlacements and percolation. Ann. Math. 171(2), 2039–2087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Teixeira A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14(54), 1604–1628 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Teixeira A.: On the uniqueness of the infinite cluster of the vacant set of random interlacements. Adv. Appl. Probab. 19, 454–466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Teixeira, A., Windisch, D.: On the fragmentation of a torus by random walk. Commun. Pure Appl. Math. 64(12), 1599–1646 (2011)

  53. Varadhan S.R.S.: large deviations for random walk in random environment. Commun. Pure Appl. Math. 56(8), 1222–1245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yilmaz A.: Quenched large deviations for random walk in random environment. Commun. Pure Appl. Math. 62(8), 1033–1075 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zerner M.: Lyapunov exponents and quenched large deviations for multidimensional random walks in random environment. Ann. Probab. 26(4), 1446–1476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zerner M.: Directional decay of the Green’s function for a random nonnegative potential on \({\mathbb{Z}^d}\). Ann. Appl. Probab. 8(1), 246–280 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Mukherjee.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, N., Mukherjee, C. & Okamura, K. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations. Commun. Math. Phys. 358, 633–673 (2018). https://doi.org/10.1007/s00220-017-3054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3054-z

Navigation