Skip to main content
Log in

Chaotic dynamics of high-order neural networks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The dynamics of an extremely diluted neural network with high-order synapses acting as corrections to the Hopfield model is investigated. The learning rules for the high-order connections contain mixing of memories, different from all the previous generalizations of the Hopfield model. The dynamics may display fixed points or periodic and chaotic orbits, depending on the weight of the high-order connections ε, the noise levelT, and the network load, defined as the ratio between the number of stored patterns and the mean connectivity per neuron, α=P/C. As in the related fully connected case, there is an optimal value of the weight ε that improves the storage capacity of the system (the capacity diverges).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. C. Coolen and Th. W. Ruijgrok,Phys. Rev. A,38:4253 (1988); T. B. Kepler and L. F. Abbott,J. Phys. (Paris)49:1657 (1988); E. Gardner, B. Derrida, and P. Mottishaw,J. Phys. (Paris)48:741 (1987).

    Google Scholar 

  2. A. C. C. Coolen and D. Sherrington,Phys. Rev. Lett. 71:3886 (1993); A. C. C. Coolen and D. Sherrington,Phys. Rev. E 49:1921 (1994).

    Google Scholar 

  3. B. Derrida, E. Gardner and A. Zippelius,Europhys. Lett. 4:167 (1987).

    Google Scholar 

  4. D. J. Amit, H. Gutfreund, and H. Sompolinsky,Ann. Phys. (NY)173:30 (1987).

    Google Scholar 

  5. P. Peretto and J. J. Niez,Biol. Cybern. 54:53 (1986).

    Google Scholar 

  6. E. Gardner,J. Phys. A 20:3453 (1987); L. F. Abbott and Y. Arian,Phys. Rev. A.36:5091 (1987); D. Horn and M. Usher,J. Phys. (Paris)49:389 (1988).

    Google Scholar 

  7. I. Kanter,Phys. Rev. A,38:5972 (1988).

    Google Scholar 

  8. F. A. Tamarit, D. A. Stariolo, and E. M. F. Curado,Phys. Rev. A 43:7083 (1991).

    Google Scholar 

  9. L. Wang and J. Ross,Phys. Rev. A 44:R2259 (1991).

    Google Scholar 

  10. R. M. C. de Almeida and J. R. Iglesias,Phys. Lett. A,146:239 (1990); J. J. Arenzon, R. M. C. de Almeida, and J. R. Iglesias,J. Stat. Phys. 69:385 (1992).

    Google Scholar 

  11. J. J. Arenzon, R. M. C. de Almeida, J. R. Iglesias, T. J. P. Penna, and P. M. C. de OliveiraPhysica A 197:1 (1993).

    Google Scholar 

  12. J. J. Arenzon and R. M. C. de Almeida,Phys. Rev. E,48:4060 (1993).

    Google Scholar 

  13. D. Bollé, J. Huyghebaert, and G. M. Shim,J. Phys. A 27:5871 (1994).

    Google Scholar 

  14. C. A. Skarda and W. J. Freeman,Behav. Brain Sci. 10:161 (1987).

    Google Scholar 

  15. J. J. Hopfield,Proc. Natl. Acad. Sci. USA 79:2554 (1982).

    Google Scholar 

  16. J. Hertz, A. Krogh, and R. G. Palmer,Introduction to the Theory of Neural Computation (Addison-Wesley, Reading, Massachusetts, 1991).

    Google Scholar 

  17. J. Testa and G. A. Held,Phys. Rev. A 28:3085 (1983).

    Google Scholar 

  18. R. Kuhn and J. L. van Hemmen, InPhysics of Neural Networks, E. Domany, J. L. van Hemmen, and K. Schulten, eds. (Springer, 1990).

  19. E. Ott,Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  20. A. Canning and E. Gardner,J. Phys. A 21:3275 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, N., Arenzon, J.J. & Tamarit, F.A. Chaotic dynamics of high-order neural networks. J Stat Phys 79, 415–427 (1995). https://doi.org/10.1007/BF02179396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179396

Key Words

Navigation