Skip to main content
Log in

The magnetic fields and rotation generators of free space electromagnetism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The relation is developed between rotation generators of the Lorentz group and the magnetic fields of free-space electromagnetism. Using these classical relations, it is shown that in the quantum field theory there exists a longitudinal photomagneton, a quantized magnetic flux density operator which is directly proportional to the photon spin angular momentum. Commutation relations are given in the quantum field between the longitudinal photomagneton and the usual transverse magnetic components of quantized electromagnetism. The longitudinal component is phase free, but the transverse components are phase dependent. All three components can magnetize material in general, but only the transverse components contribute to Planck's law. The photon therefore has three, not two, relativistically invariant degrees of polarization, an axial, longitudinal, polarization, and the usual right and left circular transverse polarizations. Since the longitudinal polarization is axial, it is a phase- free magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Jackson,Classical Electrodynamics (Wiley, New York, 1962).

    Google Scholar 

  2. R. M. Whitner,Electromagnetics (Prentice-Hall, Englewood Cliffs, 1962).

    Google Scholar 

  3. A. F. Kip,Fundamentals of Electricity and Magnetism (McGraw-Hill, New York, 1962).

    Google Scholar 

  4. M. Born and E. Wolf,Principles of Optics, 6th edn. (Pergamon, Oxford, 1975).

    Google Scholar 

  5. L. H. Ryder,Quantum Field Theory (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  6. Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959).

    Google Scholar 

  7. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom,Phys. Rev. Lett. 15, 190 (1965); alsoPhys. Rev. 143, 574 (1966).

    Google Scholar 

  8. J. Deschamps, M. Fitaire, and M. Lagoutte,Phys. Rev. Lett. 25, 1330 (1970); alsoRev. Appl. Phys. 7, 155 (1972).

    Google Scholar 

  9. N. Sanford, R. W. Davies, A. Lempicki, W. J. Miniscalco, and R. J. Nettel,Phys. Rev. Lett. 50, 1803 (1983).

    Google Scholar 

  10. T. W. Barrett, H. Wohltjen, and A. Snow,Nature (London) 301, 694 (1983).

    Google Scholar 

  11. P. F. Liao and G. C. Bjorklund,Phys. Rev. Lett. 36, 584 (1976).

    Google Scholar 

  12. Reviewed by R. Zawodny in Vol. 85(1) of M. W. Evans and S. Kielich, eds.,Modern Nonlinear Optics, a special topical issue in three volumes of I. Prigogine and S. A. Rice, series eds.,Advances in Chemical Physics, Vols. 85(1), 85(2), and 85(3) (Wiley Interscience, New York, 1993).

  13. A. Einstein,Ann. Phys. 17, 132 (1905);

    Google Scholar 

  14. reviewed in A. Pais,The Science and the Life of Albert Einstein (Oxford University Press, New York, 1982).

    Google Scholar 

  15. M. W. Evans,The Photon's Magnetic Field (World Scientific, Singapore, 1992).

    Google Scholar 

  16. L. de Broglie,La Méchanique Ondulatoire du Photon (Gauthier-Villars, Paris, 1936, 1940, 1957).

    Google Scholar 

  17. Reviewed in Ref. (13b)reviewed in.

    Google Scholar 

  18. M. W. Evans,Physica B 182, 227, 237 (1992);183, 103 (1993).

    Google Scholar 

  19. S. Kielich, in M. Davies, Senior Reporter,Dielectric and Related Molecular Processes, Vol. 1 (Chemical Society of London, 1972).

  20. M. W. Evans, in I. Prigogine and S. A. Rice, series eds.,Advances in Chemical Physics, Vol. 81 (Wiley-Interscience, New York, 1992).

    Google Scholar 

  21. P. W. Atkins,Molecular Quantum Mechanics, 2nd edn. (Clarendon, Oxford, 1983).

    Google Scholar 

  22. E. P. Wigner,Ann. Math. 40, 149 (1939).

    Google Scholar 

  23. For a review of the fundamentals of special relativity, see Ref. 13,reviewed in.

    Google Scholar 

  24. J.-P. Vigier, “Present experimental status of the Einstein-de Broglie theory of light,”Proceedings, I.S.Q.M. (Tokyo Workshop on Quantum Mechanics, 1992).

  25. B. W. Shore,The Theory of Coherent Atomic Excitation Vol. 1 (Wiley, New York, 1990), Chapter 9.

    Google Scholar 

  26. S. Woźniak, M. W. Evans, and G. Wagnière,Mol. Phys. 75, 81, 99 (1992).

    Google Scholar 

  27. M. W. Evans, Vol. 85(2) of Ref. 12, October, 1993.

  28. J. Frey, R. Frey, C. Flytzannis, and R. Triboulet,Opt. Commun. 84, 76 (1991).

    Google Scholar 

  29. B. Talin, V. P. Kaftandjan, and L. Klein,Phys. Rev. A 11, 648 (1975).

    Google Scholar 

  30. M. W. Evans,Mod. Phys. Lett. 7, 1247 (1993).

    Google Scholar 

  31. J. F. Ward,Rev. Mod. Phys. 37, 1 (1965).

    Google Scholar 

  32. L. D. Landau and E. M. Lifschitz,The Classical Theory of Fields, 4th edn. (Pergamon, Oxford, 1975).

    Google Scholar 

  33. M. W. Evans, in A. Garuccio and A. van der Merwe, eds.,Waves and Particles in Light and Matter (Plenum, New York, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M.W. The magnetic fields and rotation generators of free space electromagnetism. Found Phys 24, 1519–1542 (1994). https://doi.org/10.1007/BF02054781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02054781

Keywords

Navigation