Skip to main content
Log in

Basolateral membrane potassium conductance of A6 cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

To study the properties of the basolateral membrane conductance of an amphibian epithelial cell line, we have adapted the technique of apical membrane selective permeabilization (Wills, N.K., Lewis, S.A., Eaton, D.C., 1979b, J. Membrane Biol. 45:81–108). Monolayers of A6 cells cultured on permeable supports were exposed to amphotericin B. The apical membrane was effectively permeabilized, while the high electrical resistance of the tight junctions and the ionic selectivity of the basolateral membrane were preserved. Thus the transepithelial current-voltage relation reflected mostly the properties of the basolateral membrane. Under “basal” conditions, the basolateral membrane conductance was inward rectifying, highly sensitive to barium but not to quinidine. After the induction of cell swelling either by adding chloride to the apical solution or by lowering the osmolarity of the basolateral solution, a large out-ward-rectifying K+ conductance was observed, and addition of barium or quinidine to the basolateral side inhibited, respectively, 82.4±1.9% and 90.9±1.0% of the transepithelial current at 0 mV. Barium block was voltage dependent; the half-inhibition constant (K i) varied from 1499±97 μm at 0 mV to 5.7±0.5 μm at −120 mV.

Cell swelling induces a large quinidine-sensitive K+ conductance, changing the inward-rectifying basolateral membrane conductance observed under “basal” conditions into a conductance with outward-rectifying properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M., Swenson, J.R., Taylor, S.R. 1982. Block of squid axon K channels by internally and externally applied barium ions.J. Gen. Physiol. 80:663–682

    Google Scholar 

  • Butt, A.G., Clapp, W.L., Frizzell, R.A. 1990. Potassium conductances in tracheal epithelium activated by secretion and cell swelling.Am. J. Physiol. 258:C630-C638

    Google Scholar 

  • Chang, D., Dawson, D.C. 1988. Digitonin-permeabilized colonic cell layers.J. Gen. Physiol. 92:281–306

    Google Scholar 

  • Costantin, J., Alcalen, S., De Souza Otero, A., Dubinsky, W.P., Schultz, S.G. 1989. Reconstitution of an inward rectifying potassium channel from the basolateral membranes ofNecturus enterocytes into planar lipid bilayers.Proc. Natl. Acad. Sci. USA 86:5212–5216

    Google Scholar 

  • Dawson, D.C. 1987. Properties of epithelial potassium channels.Curr. Topics Membr. Trans. 28:41–71

    Google Scholar 

  • Dawson, D.C., Richards, N.W. 1990. Basolateral K conductance: Role in regulation of NaCl absorption and secretion.Am. J. Physiol. 259:C181-C195

    Google Scholar 

  • De Kruijff, B., Gerritsen, W.S., Oerlemans, A., Demel, R.A., Van Deenen, L.L.M. 1974. Polyene antibiotic-sterol interactions in membranes ofAcholeplasma laidlawii cells and lecithin liposomes.Biochim. Biophys. Acta 339:30–43

    Google Scholar 

  • De Wolf, I., Van Driessche, W. 1986. Voltage-dependent block of K+ channels in the apical membrane of frog skin.Am. J. Physiol. 251:C696-C706

    Google Scholar 

  • Eaton, D.C., Brodwick, M.S. 1980. Effects of barium on the potassium conductance of squid axon.J. Gen. Physiol. 75:727–750

    Google Scholar 

  • Eveloff, J.L., Warnock, D.G. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252:F1-F10

    Google Scholar 

  • Garty, H. 1984. Current-voltage relations of the basolateral membrane in tight amphibian epithelia: Use of nystatin to depolarize the apical membrane.J. Membrane Biol. 77:213–222

    Google Scholar 

  • Germann, W.J., Ernst, S.A., Dawson, D.C. 1986a. Resting and osmotically induced basolateral K conductances in turtle colon.J. Gen. Physiol. 88:253–274

    Google Scholar 

  • Germann, W.J., Lowy, M.E., Ernst, S.A., Dawson, D.C. 1986b. Differentiation of two distinct K conductances in the basolateral membrane of turtle colon.J. Gen. Physiol. 88:237–251

    Google Scholar 

  • Granitzer, M., Leal, T., Nagel, W., Crabbe, J. 1991. Apical and basolateral conductance in cultured A6 cells.Pfluegers Arch. 417:463–468

    Google Scholar 

  • Guggino, S.E., Guggino, W.B., Green, N., Sacktor, B. 1987. Blocking agents of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells.Am. J. Physiol. 252:C128-C137

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1986. Regulation of single sodium channels in renal tissue: A role in sodium homeostasis.Fed. Proc. 45:2713–2717

    Google Scholar 

  • Handler, J.S., Steele, R.E., Sahib, M.K., Wade, J.B., Preston, A.S., Lawson, N.L., Johnson, J.P. 1979. Toad urinary bladder epithelial cells in culture: Maintenance of epithelial structure, sodium transport, and response to hormones.Proc. Natl. Acad. Sci. USA 76:4151–4155

    Google Scholar 

  • Hanrahan, J.W., Wills, N.K., Phillips, J.E., Lewis, S.A. 1986. Basolateral K channels in an insect epithelium: Channel density, conductance, and block by barium.J. Gen. Physiol. 87:443–466

    Google Scholar 

  • Horisberger, J.-D., Giebisch, G. 1988. Voltage dependence of the basolateral membrane conductance in theAmphiuma collecting tubule.J. Membrane Biol. 105:257–263

    Google Scholar 

  • Kawahara, K., Hunter, M., Giebisch, G. 1987. Potassium channels in theNecturus proximal tubule.Am. J. Physiol. 253:F488-F494

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    Google Scholar 

  • Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F953-F962

    Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Lewis, S.A., Butt, A.G., Bowler, M.J., Leader, J.P., Mac-Knight, A.D.C. 1985a. Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder.J. Membrane Biol. 83:119–137

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440

    Google Scholar 

  • Lewis, S.A., Hanrahan, J.W. 1985b. Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium.Pfluegers Arch. 405(Suppl 1):S83-S88

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1982. Electrical properties of the rabbit urinary bladder assessed using gramicidin D.J. Membrane Biol. 67:45–53

    Google Scholar 

  • Loo, D.D.F., Kaunitz, J.D. 1989. Ca2+ and cAMP activate K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon.J. Membrane Biol. 110:19–28

    Google Scholar 

  • Merot, J., Bidet, M., Le Maout, S., Tauc, M., Poujeol, P. 1989. Two types of K+ channels in the apical membrane of rabbit proximal tubule in the primary culture.Biochim. Biophys. Acta 978:134–144

    Google Scholar 

  • Nagel, W. 1985. Basolateral membrane ionic conductance in frog skin.Pfluegers Arch. 405:S39-S43

    Google Scholar 

  • Nelder, J.A., Mead, R. 1965. A simplex method for function minimization.Comput. J. 7:308–313

    Google Scholar 

  • Neyton, J., Miller, C. 1988. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel.J. Gen. Physiol. 92:569–586

    Google Scholar 

  • Paccolat, M.P., Geering, J., Gaeggeler, H.-P., Rossier, B.C. 1987. Aldosterone regulation of Na+ transport and Na+−K+-ATPase in A6 cells: Role of growth conditions.Am. J. Physiol. 252:C468-C476

    Google Scholar 

  • Preston, A.S., Muller, J., Handler, J.S. 1988. Dexamethasone accelerates differentiation of A6 epithelia and increases response to vasopressin.Am. J. Physiol. 255:661–666

    Google Scholar 

  • Reuss, L., Gatzy, J.T., Finn, A.L. 1978. Dual effects of amphotericin B on ion permeation in toad urinary bladder epithelium.Am. J. Physiol. 235:F507-F514

    Google Scholar 

  • Reuss, L., Lewis, S.A., Wills, N.K., Helman, S.I., Cox, T.C., Boron, W.F., Siebens, A.W., Guggino, W.B., Giebisch, G., Schultz, S.G. 1984. Ion transport processes in basolateral membranes of epithelia.Fed. Proc. 43:2488–2502

    Google Scholar 

  • Richards, N.W., Dawson, D.C. 1986. Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells.Am. J. Physiol. 251:C85-C89

    Google Scholar 

  • Sackin, H., Palmer, L.G. 1987. Basolateral potassium channels in renal proximal tubule.Am. J. Physiol. 253:F476-F487

    Google Scholar 

  • Schoen, H.F., Erlij, D. 1985. Current-voltage relations of the apical and basolateral membranes of the frog skin.J. Gen. Physiol. 86:257–287

    Google Scholar 

  • Schultz, S.G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, Cambridge

    Google Scholar 

  • Schultz, S.G., Thompson, S.M., Hudson, R., Thomas, S.R., Suzuki, Y. 1984. Electrophysiology ofNecturus urinary bladder: II. Time-dependent current-voltage relations of the basolateral membranes.J. Membrane Biol. 79:257–269

    Google Scholar 

  • Standen, N.B., Stanfield, P.R. 1978. A potential and time dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.J. Physiol. 280:169–191

    Google Scholar 

  • Taniguchi, J., Yoshitomi, K., Imai, M. 1989. K+ channel currents in basolateral membrane of distal convoluted tubule of rabbit kidney.Am. J. Physiol. 256:F246-F254

    Google Scholar 

  • Thomas, S.R., Mintz, E. 1987. Time-dependent apical membrane K+ and Na+ selectivity in cultured kidney cells.Am. J. Physiol. 253:C1-C6

    Google Scholar 

  • Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. Electrophysiology ofNecturus urinary bladder: 1. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways.J. Membrane Biol. 66:55–61

    Google Scholar 

  • Turnheim, K., Costantin, J., Chan, S., Schultz, S.G. 1989. Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into planar lipid bilayers.J. Membrane Biol. 112:247–254

    Google Scholar 

  • Van Driessche, W., Hillyard, S.D. 1985. Quinidine blockage of K+ channels in the basolateral membrane of larval bullfrog skin.Pfluegers Arch. 405(Suppl. 1):S77-S82

    Google Scholar 

  • Van Driessche, W., Zeiske, W. 1980. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria).J. Membrane Biol. 56:31–42

    Google Scholar 

  • Verrey, F., Schaerer, E., Zoerkler, P., Paccolat, M.P., Geering, K., Kraehenbuhl, J.P., Rossier, B.C. 1987. Regulation by aldosterone of Na+,K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells.J. Cell Biol. 104:1231–1237

    Google Scholar 

  • Wills, N.K., Eaton, D.C., Lewis, S.A., Ifshin, M.S. 1979a. Current-voltage relationship of the basolateral membrane of a tight epithelium.Biochim. Biophys. Acta 555:519–523

    Google Scholar 

  • Wills, N.K., Lewis, S.A., Eaton, D.C. 1979b. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:81–108

    Google Scholar 

  • Zeiske, W., Van Driessche, W., Ziegler, R. 1986. Current-noise analysis of the basolateral route for K+ ions across a K+-secreting insect midgut epithelium (Manduca sexta).Pfluegers Arch. 407:657–663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broillet, MC., Horisberger, JD. Basolateral membrane potassium conductance of A6 cells. J. Membrain Biol. 124, 1–12 (1991). https://doi.org/10.1007/BF01871359

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871359

Key Words

Navigation