Skip to main content
Log in

Identification of apical membranes from tight epithelia using spin-labeled amiloride and electron paramagnetic resonance spectroscopy

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Apical cell membranes from Na+-transporting epithelia were identified in centrifugal fractions prepared from homogenates of rainbow trout kidney, gill and frog skin using a spinlabeled, nitroxide derivative of amiloride and electron paramagnetic resonance spectroscopy. Spin-labeled amiloride (ASp) is a potent inhibitor of Na+ transport. Frog skin shortcircuit current was inhibited by 50% in the presence of 7×10−8 m ASp, whereas 4×10−7 m amiloride was required to obtain the same effect. ASp is a suitable probe for the amiloride binding site based on analytical criteria: Unbound ASp produces an EPR signal linear with concentration and detectable at micromolar concentrations. Estimates of ASp binding can usually be made on less than 100 μg of membrane protein. While ASp binds nonspecifically to many materials, amiloride- or benzamil-displaceable binding occurred only in trout gill and kidney, and in frog skin, but not in trout skeletal muscle. ASp binds to membrane fractions produced by differential centrifugation of trout gill, kidney and frog skin. In trout gill and kidney, 81% and 91%, respectively, of the amiloride-displaceable ASp binding is found in the 10,000 xg fraction. All of the ASp binding in frog skin is found in the 10,000 xg fraction. These data indicate that spin-labeled amiloride is a useful probe for the identification of the amiloride binding site, and electron paramagnetic resonance spectroscopy will allow the amiloride binding site to be used as a molecular marker for apical membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benos, D.J., Mandel, L.J., Balaban, R.S. 1979. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelium.J. Gen. Physiol. 73:307–326

    PubMed  Google Scholar 

  • Bornancin, M., Renzis, G. de, Naon, R. 1980. Cl−HCO 3 -ATPase in the gills of the rainbow trout: Evidence for its microsomal localization.Am. J. Physiol. 238:R251-R259

    PubMed  Google Scholar 

  • Briggman, J.V., Cragoe, E.J., Jr., Couch, R., Spicer, S.S. 1982. The binding of a spin-labeled derivative of amiloride to frog skin.Fed. Proc. 41:1694

    Google Scholar 

  • Chase, H., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal membrane of toad bladder by intracellular sodium and calcium.J. Gen. Physiol. 77:693–712

    PubMed  Google Scholar 

  • Chase, H., Al-Awqati, Q. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder.J. Gen. Physiol. 81:643–665

    PubMed  Google Scholar 

  • Cragoe, E.J., Jr. 1979. Structure-activity relationships in the amiloride series.In: Amiloride and Epithelial Sodium Transport. A.W. Cuthbert, G.M. Fanelli, Jr. and A. Scriabine, editors. pp. 1–20. Urban & Schwartzenberg, Baltimore-Munich

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1974. Binding of amiloride to sodium channels in frog skin.Mol. Pharmacol. 10:880–891

    Google Scholar 

  • Davis, C.W., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    PubMed  Google Scholar 

  • DePierre, J.W., Karnovsky, M.L. 1973. Plasma membranes of mammalian cells: A review of methods for their characterization and isolation.J. Cell Biol. 56:275–303

    PubMed  Google Scholar 

  • Dubinsky, W.P., Jr., Frizzell, R.A. 1983. A novel effect of amiloride on H+-dependent Na+ transport.Am. J. Physiol. 245:C157-C159

    PubMed  Google Scholar 

  • Fishbein, W.N., Stowell, R.E. 1968. Studies on the mechanism of freezing damage to mouse liver using a mitochondrial enzyme assay. I. Temporal localization of the injury phase during slow freezing.Cryobiology 4:283–289

    PubMed  Google Scholar 

  • Hokin, L.E. 1981. Reconstitution of “carriers” in artificial membrane vesicles.J. Membrane Biol. 60:77–93

    Google Scholar 

  • Hokin, L.E., Dahl, J.L., Deupree, J.D., Dixon, J.F., Hackney, J.F., Perdue, J.F. 1973. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland ofSqualus acanthias.J. Biol. Chem. 248:2593–2605

    PubMed  Google Scholar 

  • Holmes, W.N., Stainer, I.M. 1966. Studies on the renal excretion of electrolytes by the trout (Salmo gairdneri).J. Exp. Biol. 44:33–46

    PubMed  Google Scholar 

  • Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane vesicles from rat small intestine.J. Biol. Chem. 248:25–52

    Google Scholar 

  • Jost, P.C., Griffith, O.H. 1978. The spin-labeling technique.In: Methods in Enzymology. C.H.W. Hirs and S.N. Timasheff, editors. Vol. 49, pp. 369–418. Academic, New York

    Google Scholar 

  • Kessler, M., Acuto, O., Storelli, C., Murer, H., Muller, M., Semenza, G. 1978. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush-border membranes.Biochim. Biophys. Acta 506:136–154

    Google Scholar 

  • Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal lateral-plasma membranes.J. Membrane Biol. 21:375–395

    Google Scholar 

  • Kinsella, J.L., Aronson, P.S. 1980. Properties of the Na+−H exchanger in renal microvillus membrane vesicles.Am. J. Physiol. 238:F461-F469

    PubMed  Google Scholar 

  • Kirschner, L.B. 1979. Extrarenal action of amiloride in aquatic animals.In: Amiloride and Epithelial Sodium Transport. A.W. Cuthbert, G.M. Fanelli, Jr., and A. Scriabine, editors. pp. 41–50. Urban & Schwartzenberg, Baltimore-Munich

    Google Scholar 

  • Kirschner, L.B. 1983. Sodium chloride absorption across the body surface: Frog skins and other epithelia.Am. J. Physiol. 244:R429-R443

    PubMed  Google Scholar 

  • Kirschner, L.B., Greenwald, L., Kerstetter, T.H. 1973. Effect of amiloride on sodium transport across body surfaces of freshwater animals.Am. J. Physiol. 224:832–837

    PubMed  Google Scholar 

  • LaBelle, E.F., Lee, S.O. 1982. Inhibition by amiloride of sodium transport into rabbit kidney medulla microsomes.Biochim. Biophys. Acta 685:367–378

    PubMed  Google Scholar 

  • LaBelle, E.F., Valentine, M.E. 1980. Inhibition by amiloride of22Na+ transport into toad bladder microsomes.Biochim. Biophys. Acta 601:195–205

    Google Scholar 

  • Liang, C.T., Sacktor, B. 1976. Bicarbonate stimulated ATPase in renal proximal tubule (brush-border) membraneArch. Biochem. Biophys. 176:285–297

    PubMed  Google Scholar 

  • Murer, H., Kinne, R. 1980. The use of isolated membrane vesicles to study epithelial transport processes.J. Membrane Biol. 55:81–95

    Google Scholar 

  • Neville, D.M., Jr. 1976. The preparation of cell surface membrane enriched fractions.In: Biochemical Analysis of Membranes. A.H. Maddy, editor. pp. 27–53. Wiley & Sons, New York

    Google Scholar 

  • Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more applicable.Anal. Biochem. 83:346–356

    Article  PubMed  Google Scholar 

  • Peterson, G.L. 1978. A simplified method of phosphate analysis in the presence of interfering substances.Anal. Biochem. 84:164–172

    PubMed  Google Scholar 

  • Renzis, G. de, Bornancin, M. 1977. A Cl/HCO 3 ATPase in the gills ofCarassius auratus. Its inhibition by thiocyanate.Biochim. Biophys. Acta 467:192–207

    PubMed  Google Scholar 

  • Rodriguez, H.J., Edelman, I.S. 1979. Isolation of radio-iodinated apical and basal-lateral plasma membranes of toad bladder epithelium.J. Membrane Biol. 45:215–232

    Google Scholar 

  • Sachs, G., Jackson, R.J., Rabon, E.C. 1980. Use of plasma membrane vesicles.Am. J. Physiol. 238:G151-G164

    PubMed  Google Scholar 

  • Sacktor, B., Rosenbloom, I.L., Liang, C.T., Cheng, L. 1981. Sodium gradient- and sodium plus potassium gradient-dependentl-glutamate uptake in renal basolateral membrane vesicles.J. Membrane Biol. 60:63–71

    Google Scholar 

  • Soltoff, S.P., Mandel, L.J. 1983. Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules.Science 220:957–959

    PubMed  Google Scholar 

  • Steel, R.G.D., Torrie, J.H. 1960. Principles and Procedures of Statistics. pp. 161–183. McGraw-Hill, New York

    Google Scholar 

  • Trumpower, B.L., Katki, A.G. 1978. Succinate-cytochromec reductase complex of the mitochondrial electron transport chain.In: Membrane Proteins in Energy Transduction. R. Capaldi, editor. pp. 89–200. M. Dekker, New York

    Google Scholar 

  • Van Amelsvoort, J.M.M., DePont, J.J.H.H.M., Stols, A.L.H., Bonting, S.L. 1977. Is there a plasma-membrane-located anion sensitive ATPase? II. Further studies on rabbit kidney.Biochim. Biophys. Acta 471:78–91

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, C.J., Kirschner, L.B. & Cragoe, E.J. Identification of apical membranes from tight epithelia using spin-labeled amiloride and electron paramagnetic resonance spectroscopy. J. Membrain Biol. 82, 49–57 (1984). https://doi.org/10.1007/BF01870731

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870731

Key Words

Navigation