Skip to main content
Log in

Ca2+-independent form of protein kinase C may regulate Na+ transport across frog skin

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Activators of protein kinase C (PKC) stimulate Na transport (J Na) across frog skin. We have examined the effect of Ca2+ on PKC stimulation ofJ Na. Both the phorbol ester 12-O-tetradecanoylglycerol (DiC8) were used as PKC activators. Blocking Ca2+ entry into the cytosol (either from external or internal stores) reduced the subsequent natriferic effect of the PKC activators. This negative interaction did not simply reflect saturation of activation of the apical Na+ channels, since the stimulations produced by blocking Ca2+ entry and adding cyclic AMP were simply additive.

The Ca2+ dependence of the natriferic effect could have reflected either a direct action of cytosolic Ca2+ on PKC or an indirect action on the final receptor site (the Na+ channel). To distinguish between these possibilities, the TPA- and phospholipid-dependent kinase activity of broken-cell preparations was assayed. The kinase activity was not stimulated by physiological levels of Ca2+, and in fact was inhibited at millimolar concentrations of Ca2+.

We conclude that the effects of Ca2+ on the natriferic response to PKC activators are indirect. Reducing cytosolic uptake of Ca2+ may have stimulated Na+ transport by a chemical modification of the apical channels observed in other tight epithelia. The usual stimulation of Na+ transport produced by PKC activators in frog skin may reflect the operation of a nonconventional form of PKC. This enzyme is Ca2+ independent and seems related to thenPKC or PKCε observed in other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, H., Bjerregaard, H., Nielsen, R. 1987. Effect of protein kinase C activator (TPA) on sodium transport and osmotic water flow in frog skin.Acta Physiol. Scand. 129:27A

    PubMed  Google Scholar 

  • Banks, R.O. 1974. Cadmium stimulation & cadmium-cysteine inhibition of active Na transport by the frog skin.Physiologist 17:175

    Google Scholar 

  • Borghgraef, R., Stymans, A., van Driessche, W. 1971. The action of divalent cations on the electrical resistance of the frog skin.Arch. Int. Physiol. Biochim. 79:171–173

    PubMed  Google Scholar 

  • Bridges, R.J., Garty, H., Benos, D.J., Rummel, W. 1988. Sodium uptake into colonic enterocyte membrane vesicles.Am. J. Physiol. 254:C484-C490

    PubMed  Google Scholar 

  • Chase, H.S., Al-Awqati, Q. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder, studies using a fast-reaction apparatus.J. Gen. Physiol. 31:643–665

    Google Scholar 

  • Chiou, C.Y., Malagodi, M.H. 1975. Studies on the mechanism of a new Ca2+ antagonist, 8-(N, N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscle.Br. J. Pharmacol. 53:279–285

    PubMed  Google Scholar 

  • Civan, M.M. 1983. Epithelial Ions and Transport: Application of Biophysical Techniques. Wiley Interscience, New York

    Google Scholar 

  • Civan, M.M., Peterson-Yantorno, K., DiBona, D.R., Wilson, D.F., Erecińska, M. 1983. Bioenergetics of Na+ transport across frog skin: Chemical and electrical measurements.Am. J. Physiol. 245:F691-F700

    Google Scholar 

  • Civan, M.M., Peterson-Yantorno, K., George, K., O'Brien, T.G. 1989. Interactions of TPA and insulin on Na+ transport across frog skin.Am. J. Physiol. 256:C569-C578

    PubMed  Google Scholar 

  • Civan, M.M., Peterson-Yantorno, K., O'Brien, T.G. 1987. Diacylglycerols stimulate short-circuit current across frog skin by increasing apical Na+ permeability.J. Membrane Biol. 97:193–204

    Google Scholar 

  • Civan, M.M., Peterson-Yantorno, K., O'Brien, T.G. 1988. Insulin and phorbol ester stimulate conductive Na+ transport through a common pathway.Proc. Natl. Acad. Sci. USA 85:963–967

    PubMed  Google Scholar 

  • Civan, M.M., Rubenstein, D., Mauro, T., O'Brien, T. 1985. Effects of tumor promoters on sodium ion transport across frog skin.Am. J. Physiol. 248:C457-C465

    Google Scholar 

  • Collins, S.A., Pon, D.J., Sen, A.K. 1987. Phosphorylation of the α-subunit of the (Na++K+)-ATPase by carbachol in tissue slices and the role of phosphoproteins in stimulus-secretion coupling.Biochim. Biophys. Acta 927:392–401

    PubMed  Google Scholar 

  • Curran, P.F., Gill, J.R. 1962. The effect of calcium on sodium transport in frog skin.J. Gen. Physiol. 45:625–641

    PubMed  Google Scholar 

  • DeLong, J., Civan, M.M. 1983. Microelectrode study of K accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.J. Membrane Biol. 72:183–193

    Google Scholar 

  • DeLong, J., Civan, M.M. 1984. Apical sodium entry in split frog skin: Current-voltage relationship.J. Membrane Biol. 82:25–40

    Google Scholar 

  • Du Bois Reymond, E. 1848. Untersuchungen über tierische Elektricität. G. Reimer, Berlin

    Google Scholar 

  • Ferrari, S., Marchiori, F., Borin, G., Pinna, L.A. 1985. Distinct structural requirements of Ca2+/phospholipid-dependent protein kinase (protein kinase C) and cAMP-dependent protein kinase as evidenced by synthetic peptide substrates.FEBS Lett. 184:72–77

    PubMed  Google Scholar 

  • Fisher, R.S., Erlij, D., Helman, S. 1980. Intracellular voltage of isolated epithelia of frog skin: Apical and basolateral cell punctures.J. Gen. Physiol. 76:447–453

    PubMed  Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. 267:137–166

    PubMed  Google Scholar 

  • Garty, H., Asher, C. 1985. Ca2+ dependent, temperature sensitive, regulation of Na+ channels in tight epithelia. A study using membrane vesicles.J. Biol. Chem. 260:8330–8335

    PubMed  Google Scholar 

  • Garty, H., Asher, C., Yeger, O. 1987. Direct inhibition of epithelial Na+ channels by a pH-dependent interaction with calcium, and by other divalent ions.J. Membrane Biol. 95:151–162

    Google Scholar 

  • Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel.Physiol. Rev. 68:309–373

    PubMed  Google Scholar 

  • Geering, K., Girardet, M., Bron, C., Kraehenbuhl, J.P., Rossier, B.C. 1982. Hormonal regulation of (Na+, K+)-ATPase biosynthesis in the toad bladder: Effect of aldosterone and 3,5,3′-triiodo-l-thyronine.J. Biol. Chem. 257:10,338–10,343

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Article  Google Scholar 

  • Goncharevskaya, O.A., Monin, Yu.G., Natochin, Yu.V. 1986. The influence of furosemide and Co2+ on electrolyte and water transport in newt distal tubule and frog skin.Pfluegers Arch. 406:557–562

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin.Proc. R. Soc. London B 202:353–360

    Google Scholar 

  • Hayashi, H., Takada, M., Arita, A. 1977. Effects of cadmium on the active transport of sodium by the abdominal skin of a bullfrog (Rana catesbeiana).Jpn. J. Physiol. 27:337–352

    PubMed  Google Scholar 

  • Hillyard, S.D., Gonick, H. 1976. Effects of Cd2+ on short-circuit current across epithelial membranes. I. Interactions with Ca2+ and vasopressin on frog skin.J. Membrane Biol. 26:109–119

    Google Scholar 

  • House, C., Wettenhall, R.E.H., Kemp, B.E. 1987. The influence of basic residues on the substrate specificity of protein kinase C.J. Biol. Chem. 262:772–777

    PubMed  Google Scholar 

  • Hunter, T., Ling, N., Cooper, J.A. 1984. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane.Nature 311:480–483

    PubMed  Google Scholar 

  • Kelepouris, E., Agus, Z.S., Civan, M.M. 1985. Intracellular calcium activity in split frog skin epithelium: Effect of cAMP.J. Membrane Biol. 88:113–121

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    PubMed  Google Scholar 

  • Kojima, I., Kojima, K., Rasmussen, H. 1985. Mechanism of inhibitory action of TMB-8[8-N,N-diethylamino) octyl-3,4,4-trimethoxybenzoate] on aldosterone secretion in adrenal glomerulosa cells.Biochem. J. 232:87–92

    PubMed  Google Scholar 

  • Konieczkowski, M., Rudolph, S.A. 1985. Vasopressin-mediated protein phosphorylation in intact toad urinary bladder.J. Pharmacol. Exp. Ther. 234:515–521

    PubMed  Google Scholar 

  • Latorre, R. 1986. The large calcium-activated potassium channel.In: Ion Channel Reconstitution. C. Miller, editor. pp. 431–467 Plenum, New York

    Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Latorre, R., Oberhauser, A., Labarca, P., Alvarez, O. 1989. Varieties of calcium-activated potassium channels.Annu. Rev. Physiol. 51:385–399

    Google Scholar 

  • Leibowich, S., DeLong, J., Civan, M.M. 1988. Apical Na+ permeability of frog skin during serosal Cl replacement.J. Membrane Biol. 102:121–130

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model “tight” epithelium.Physiol. Rev. 60:615–715

    Google Scholar 

  • Matteucci, C., Cima, A. 1845. Mémoire sur l'endosmose.Ann. Chim. Phys. 13:63–86

    Google Scholar 

  • Mauro, T., O'Brien, T.G., Civan, M.M. 1987. Effects of TPA on short circuit current across frog skin.Am. J. Physiol. 252:C173-C178

    Google Scholar 

  • Miller, R.J. 1987. Multiple calcium channels and neuronal function.Science 235:46–52

    PubMed  Google Scholar 

  • Mix, L.L., Dinerstein, R.J., Villereal, M.L. 1984. Mitogens and melittin stimulate an increase in intracellular free calcium concentration in human fibroblasts.Biochem. Biophys. Res. Commun. 119:69–75

    PubMed  Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Essig, A. 1983. Cellular and paracellular conductance patterns in voltage-clamped frog skin.In: Physical Methods in the Study of Epithelia. M.A. Dinno, A.B. Callahan, and T.C. Rozzell, editors. pp. 221–231. Liss, New York

    Google Scholar 

  • Natochin, Yu.V., Goncharevskaya, O.A., Monin, Yu.G. 1986. Cobalt-dependent stimulation of sodium transport in the amphibian skin and nephron.Comp. Biochem. Physiol. 84A:353–355

    Google Scholar 

  • Nishizuka, Y. 1986. Studies and perspectives of protein kinase C.Science 233:305–312

    PubMed  Google Scholar 

  • Ohno, S., Akita, Y., Konno, Y., Imajoh, S., Suzuki, K. 1988. A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family.Cell 53:731–741

    PubMed  Google Scholar 

  • Ono, Y., Fujii, T., Ogita, K., Kikkawa, U., Igarashi, K., Nishizuka, Y. 1988. The structure, expression, and properties of additional members of the protein kinase C family.J. Biol. Chem. 263:6927–6932

    PubMed  Google Scholar 

  • Ono, Y., Kikkawa, U., Ogita, K., Fujii, T., Kurokawa, T., Asaoka, Y., Sekiguchi, K., Ase, K., Igarashi, K., Nishizuka, Y. 1987. Expression and properties of two types of protein kinase C: Alternative splicing from a single gene.Science 236:1116–1120

    PubMed  Google Scholar 

  • Orloff, J., Handler, J.S. 1962. The similarity of effects of vasopressin, adenosine-3′,5′-monophosphate (cAMP) and theophylline on the toad bladder.J. Clin. Invest. 41:702–709

    PubMed  Google Scholar 

  • Palmer, L.G., Frindt, G. 1987a. Ca ionophore and phorbol ester inhibit Na channels in rat cortical collecting tubules.Fed. Proc. 46:495

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1987b. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule.Am. J. Physiol. 253:F333-F339

    PubMed  Google Scholar 

  • Pershadsingh, H.A., Gale, R.D., McDonald, J.M. 1987. Chelation of intracellular calcium prevents stimulation of glucose transport by insulin and insulinomimetic agents in the adipocyte. Evidence for a common mechanism.Endocrinology 121:1727–1732

    PubMed  Google Scholar 

  • Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature 307:693–696

    PubMed  Google Scholar 

  • Rifkin, R.J. 1965. In vitro inhibition of Na+-K and Mg2+ ATPases by mono, di and trivalent cations.Proc. Soc. Exp. Biol. Med. 120:802–804

    PubMed  Google Scholar 

  • Rorsman, P., Arkhammar, P., Berggren, P.-O. 1986. Voltage-activated Na+ currents and their suppression by phorbolester in clonal insulin-producing RINm5F cells.Am. J. Physiol. 251:C912-C919

    PubMed  Google Scholar 

  • Rose, B., Yada, T., Loewenstein, W.R. 1986. Downregulation of cell-to-cell communication by the viralsrc gene is blocked by TMB-8 and recovery of communication is blocked by vanadate.J. Membrane Biol. 94:129–142

    Google Scholar 

  • Sawamura, M. 1985. Inhibition of protein kinase C activation by 8-N,N-(diethylamino) octyl-3,4,5-trimethoxy-benzoate (TMB-8), an intracellular Ca2+ antagonist.Kobe J. Med. Sci. 31:221–232

    Google Scholar 

  • Schlondorff, D., Levine, S.D. 1986. Inhibition of vasopressin-stimulated water flow in toad bladder by phorbol myristate acetate, dioctanoylglycerol, and RHC-80267: Evidence for modulation of action of vasopressin by protein kinase C.J. Clin. Invest. 76:1071–1078

    Google Scholar 

  • Schwartz, I.L., Shlatz, L.J., Kinne-Saffran, E., Kinne, R. 1974. Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone.Proc. Natl. Acad. Sci. USA 71:2595–2599

    PubMed  Google Scholar 

  • Segel, I.H. 1976. Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry. (2nd Ed.) Wiley, New York

    Google Scholar 

  • Shimada, H., Mishina, T., Marumo, F. 1985. The effects of PGE2 on vasopressin and guanine nucleotide-mediated adenylate cyclase activity in toad bladder membrane.Tohoku J. Exp. Med. 145:427–435

    PubMed  Google Scholar 

  • Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol-1,4,5-triphosphate on isolated subcellular fractions of rat pancreas.J. Membrane Biol. 81:241–253

    Google Scholar 

  • Takada, M. 1985. Differentiation of the active sodium transport system during metamorphosis inRana catesbeiana skin in relation to cadmium- and amiloride-induced responses.Jpn. J. Physiol. 35:525–534

    PubMed  Google Scholar 

  • Takada, M., Hayashi, H. 1978. Effects of cadmium ion on the Na,K-ATPase of microsomes obtained from frog skin.Jpn. J. Physiol. 28:473–483

    PubMed  Google Scholar 

  • Takada, M., Hayashi, H. 1980. Effect of cadmium on active sodium transport by the abdominal skin and the isolated epidermis of the bullfrog: Differences in effects between epidermal and dermal cadmium applications.Jpn. J. Physiol. 30:257–269

    PubMed  Google Scholar 

  • Takada, M., Hayashi, H. 1981. Interaction of cadmium, calcium, and amiloride in the kinetics of active sodium transport through frog skin.Jpn. J. Physiol. 31:285–303

    PubMed  Google Scholar 

  • Thompson, I.G., Mills, J.W. 1983. Chloride transport in glands of frog skin.Am. J. Physiol. 244:C221-C226

    PubMed  Google Scholar 

  • Verbost, P.M., Flik, G., Lock, R.A.C., Bonga, S.E.W. 1987a. Cadmium inhibition of Ca2+ uptake in rainbow trout gills.Am. J. Physiol. 253:R216-R221

    PubMed  Google Scholar 

  • Verbost, P.M., Flik, G., Lock, R.A.C., Bonga, S.E.W. 1988. Cadmium inhibits plasma membrane calcium transport.J. Membrane Biol. 102:97–104

    Google Scholar 

  • Verbost, P.M., Senden, M.H.M.N., van Os, C.H. 1987b. Nanomolar concentrations of Cd2+ inhibit Ca2+ transport systems in plasma membranes and intracellular Ca2+ stores in intestinal epithelium.Biochim. Biophys. Acta 902:247–252

    PubMed  Google Scholar 

  • Yada, T., Rose, B., Loewenstein, W.R. 1985. Diacylglycerol downregulates junctional membrane permeability. TMB-8 blocks this effect.J. Membrane Biol. 88:217–232

    Google Scholar 

  • Yanase, M., Handler, J.S. 1986. Activators of protein kinase C inhibit sodium transport in A6 epithelia.Am. J. Physiol. 250:C517-C522

    Google Scholar 

  • Yingst, D.R. 1988. Modulation of the Na,K-ATPase by Ca and intracellular proteins.Annu. Rev. Physiol. 50:291–303

    PubMed  Google Scholar 

  • Ziyadeh, F.N., Kelepouris, E., Civan, M.M., Agus, Z.S. 1985. cAMP- and β adrenergic-stimulated chloride-dependent Ca2+ secretion in frog skin.Am. J. Physiol. 249:F713-F722

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civan, M.M., Oler, A., Peterson-Yantorno, K. et al. Ca2+-independent form of protein kinase C may regulate Na+ transport across frog skin. J. Membrain Biol. 121, 37–50 (1991). https://doi.org/10.1007/BF01870649

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870649

Key Words

Navigation