Skip to main content
Log in

Purple membrane vesicles: Morphology and proton translocation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Purple membrane vesicles prepared by different techniques differ widely in their morphology and ability to establish a proton gradient in the light. The procedures used to prepare active vesicles do not completely dissociate the purple membrane and thus preserve a preferential orientation of the protein, while most of the lipid is exchanged for added lipid. Responses to illumination are largely determined by the size of the vesicles and the degree to which bacteriorhodopsin is preferentially oriented. Any attempt to compare the interaction of different lipids with bacteriorhodopsin by measuring the pH response must take these factors into account.

With an improved technique we have obtained vesicles of rather uniform size and bacteriorhodopsin orientation, which accumulate protons with an initial rate of 160 ng H+ sec−1 mg−1 protein at light intensities of 106 erg cm−2 sec−1. The kinetics of the process are complex and at present insufficiently understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becher, B., Ebrey, T. 1976. Evidence for chromophore-chromophore (exciton) interaction in the purple membrane ofHalobacterium halobium.Biophys. J. 16:100a (Abstract TH-AM-G7)

    Google Scholar 

  • Blaurock, A.E. 1975. Bacteriorhodopsin: A trans-membrane pump containing α-helix.J. Mol. Biol. 93:139

    Google Scholar 

  • Blaurock, A.E., Stoeckenius, W. 1971. Structure of the purple membrane.Nature New Biol. 233:152

    Google Scholar 

  • Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. 37:911

    Google Scholar 

  • Danon, A., Stoeckenius, W. 1974. Photophosphorylation inHalobacterium halobium.Proc. Nat. Acad. Sci. USA 71:1234

    Google Scholar 

  • Drachev, L.A., Jasaitis, A.A., Kaulen, A.D., Kondrashin, A.A., Liberman, E.A., Nemecek, I.B., Ostroumov, S.A., Semenov, A.Yu., Skulachev, V.P. 1974. Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin.Nature (London) 249:321

    Google Scholar 

  • Drachev, L.A., Kaulen, A.D., Ostroumov, S.A., Skulachev, V.P. 1974. Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane.FEBS Lett. 39:43

    Google Scholar 

  • Fiske, C.H., Subbarow, Y. 1925. The colormetric determination of phosphorus.J. Biol. Chem. 66:375

    Google Scholar 

  • Henderson, R. 1975. The structure of the purple membrane fromHalobacterium halobium: Analysis of the X-ray diffraction pattern.J. Mol. Biol. 93:123

    Google Scholar 

  • Henderson, R., Unwin, P.N.T. 1975. Three-dimensional model of purple membrane obtained by electron microscopy.Nature (London) 257:28

    Google Scholar 

  • Heyn, M.P., Bauer, P.-J., Dencher, N.A. 1975. A natural CD label to probe the structure of the purple membrane fromHalobacterium halobium by means of exciton coupling effects.Biochem. Biophys. Res. Commun. 67:897

    Google Scholar 

  • Holloway, P.W. 1973. A simple procedure for removal of Triton X-100 from protein samples.Analyt. Biochem. 53:304

    Google Scholar 

  • Hwang, S.-B., Korenbrot, J.I., Stoeckenius, W. 1977. Light-dependent proton transport by bacteriorhodopsin incorporated in an interface film.Prog. Clin. Biol. Res. (in press)

  • Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing32Pi-adenosine triphosphate exchange.J. Biol. Chem. 246:5477

    Google Scholar 

  • Kates, M., Palameta, B., Joo, C.N., Kushner, D.J., Gibbons, N.E. 1966. Aliphatic diether analog of glyceride-derived lipids. IV. The occurrence of di-O-dihydrophytylglycerol ether containing lipids in extremely halophilic bacteria.Biochemistry 5:4092

    Google Scholar 

  • Kayushin, L.P., Skulachev, V.P. 1974. Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating Δψ and ΔpH.FEBS Lett. 39:39

    Google Scholar 

  • Kushwaha, S.C., Kates, M., Martin, W.G. 1975. Characterization and composition of the purple membrane and red membrane fromHalobacterium cutirubrum.Can. J. Biochem. 53:284

    Google Scholar 

  • Kushwaha, S.C., Kates, M., Stoeckenius, W. 1976. Comparison of purple membrane fromHalobacterium cutirubrum andHalobacterium halobium.Biochim. Biophys. Acta 426:703

    Google Scholar 

  • Lewis, A., Spoonhower, J., Bogomolni, R.A., Lozier, R.H., Stoeckenius, W. 1974. Tunable laser resonance Raman spectroscopy of bacteriorhodopsin.Proc. Nat. Acad. Sci. USA 71:4462

    Google Scholar 

  • Lozier, R.H., Bogomolni, R.A., Stoeckenius, W. 1975. Bacteriorhodopsin: A light-driven proton pump inHalobacterium halobium.Biophys. J. 15:955

    Google Scholar 

  • Lozier, R.H., Niederberger, W., Bogomolni, R.A., Hwang, S.-B., Stoeckenius, W. 1976. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments,Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.Biochim. Biophys. Acta 440:545

    Google Scholar 

  • Mitchell, P. 1969. Oriented chemical reactions and ion movements in membranes.In: The Molecular Basis of Membrane Functions. D.C. Tosteson editor. p. 483. Prentice Hall Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Miyamoto, V.K., Stoeckenius, W. 1971. Preparation and characteristics of lipid vesicles.J. Membrane Biol. 4:252

    Google Scholar 

  • Moor, H., Mühlethaler, K. 1963. Fine structure in frozen-etched cells.J. Cell Biol. 17:609

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1971. Rhodopsin-like protein from the purple membrane ofHalobacterium halobium.Nature New Biol. 233:149

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1973. Function of a new photoreceptor membrane.Proc. Nat. Acad. Sci. USA 70:2853

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1974. Isolation of the cell membrane ofHalobacterium halobium and its fractionation into red and purple membrane.In: Methods in Enzymology, Vol. 31, Biomembranes, Part A. S. Fleischer and R. Estabrook, editors. Academic Press, New York

    Google Scholar 

  • Racker, E. 1973. A new procedure for the reconstitution of biological active phospholipid vesicles.Biochem. Biophys. Res. Commun. 55:224

    Google Scholar 

  • Racker, E., Hinkle, P.C. 1974. Effect of temperature on the function of a proton pump.J. Membrane Biol. 17:181

    Google Scholar 

  • Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662

    Google Scholar 

  • Shipley, R.A., Clark, R.E. 1972. Tracer Methods for In vivo Kinetics. Academic Press, New York & London

    Google Scholar 

  • Stoeckenius, W. 1976. Structure of biological membranes: Bacteriorhodopsin and the purple membrane. Proceedings of a Conference held in Rome, April 14–19, 1975; Pontifical Academy of Sciences “Biological and Artificial Membranes and Desalination of Water”

  • Stoeckenius, W., Hwang, S.-B., Korenbrot, J. 1977. Proton translocation by bacteriorhodopsin in model systems. Nobel Symposium 34: The Structure of Biological Membranes, S. Abrahamson and I. Pescher, editors. pp. 479–496. Plenum Press, New York

    Google Scholar 

  • Stoeckenius, W., Rowen, R. 1967. A morphological study ofHalobacterium halobium and its lysis in media of low salt concentration.J. Cell Biol. 34:365

    Google Scholar 

  • Unwin, P.N.T., Henderson, R. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens.J. Mol. Biol. 94:425

    Google Scholar 

  • Yaguzhinsky, L.S., Boguslavsky, L.I., Volkov, A.G., Rakhmaninova, A.B. 1976. Synthesis of ATP coupled with action of membrane protonic pumps at the octane-water interfaces.Nature (London) 259:494

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, SB., Stoeckenius, W. Purple membrane vesicles: Morphology and proton translocation. J. Membrain Biol. 33, 325–350 (1977). https://doi.org/10.1007/BF01869523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869523

Keywords

Navigation