Skip to main content
Log in

Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: Studies on ultrastructure, phase transitions and permeability

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A purified protein fraction from the proteolipids of human brain myelin was recombined with different lipids either in aqueous buffer or in a chloroformmethanol-water (10∶5∶1, v/v/v) mixture. It was found that under both conditions it binds strongly to phospholipids irrespective of surface charge, the presence of cholesterol or double bonds on the fatty acyl chains. The buoyant density of the resulting lipoprotein membranes is intermediate to that of pure lipids, and proteins. The lipoproteins formed by either of these methods were observed by either freeze-fracture or negative stain electron-microscopy. The overall morphology was similar to that of pure phospholipids, showing large closed multilamellar vesicles. The presence of the protein was detected by the appearance of intramembrane particles in freeze-fracture. The addition of the N-2 protein generally increases the permeability of phospholipid vesicles to22Na+ by 2–3 orders of magnitude depending on the concentration. The presence of calcium in the aqueous medium further increases the Na+ efflux through negatively charged vesicles. Changes in lipid composition, surface charge, cholesterol, etc., have no appreciable influence on the effect of the protein. Differential scanning calorimetry indicates that the presence of small amounts of N-2 have no effect on the lipid phase transition from solid to liquid crystalline. As the amount of protein bound to the phospholipid increases, the enthalpy of the transition decreases, the main endothermic peak broadens, but there is no change on the midpoint temperature. Membranes containing 50% by weight of protein still show a transition with an enthalpy approximately one half that of the original lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, J., Moscarello, M. A. 1971. Conformational transition of a myelin protein.FEBS Letters 15:335

    PubMed  Google Scholar 

  • Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238

    PubMed  Google Scholar 

  • Blazyk, J. F., Steim, J. M. 1972. Phase transitions in mammalian membranes.Biochim. Biophys. Acta 266:737

    PubMed  Google Scholar 

  • Branton, D. 1967. Fracture faces of frozen myelin.Exp. Cell Res. 45:703

    PubMed  Google Scholar 

  • Chapman, D., Urbina, J. 1971. Phase transitions and bilayer structure of mycoplasma Laidlawii B.FEBS Letters 12:169

    PubMed  Google Scholar 

  • Chapman, D., Urbina, J., Keough, K. M. 1974. Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry.J. Biol. Chem. 249:2512

    PubMed  Google Scholar 

  • Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J., Burnett, P. 1971. Basic A1 protein of the myelin membrane.J. Biol. Chem. 246:5770

    PubMed  Google Scholar 

  • Fiske, C. H., Subbarow, Y. 1925. The calorimetric determination of phosphorus.J. Biol. Chem. 66:375

    Google Scholar 

  • Folch, J., Lees, M. 1951. Proteolipids. A new type of tissue lipoproteins.J. Biol. Chem. 191:807

    PubMed  Google Scholar 

  • Folch-Pi, J., Stoffyn, P. J. 1972. Proteolipids from membrane systems.Ann. N.Y. Acad. Sci. 195:86

    PubMed  Google Scholar 

  • Gagnon, J., Finch, P. R., Wood, D. D., Moscarello, M. A. 1971. Isolation of a highly purified myelin protein.Biochemistry 10:4756

    PubMed  Google Scholar 

  • Greenwood, F. C., Hunter, W. M., Glover, J. S. 1963. The preparation of131I-labelled human growth hormone of high specific radioactivity.Biochem. J. 89:114

    PubMed  Google Scholar 

  • Hong, K., Hubbell, W. L. 1972. Preparation and properties of phospholipid bilayers containing rhodopsin.Proc. Nat. Acad. Sci. (U.S.) 69:2617

    Google Scholar 

  • Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent metals.Biochemistry 14:152

    PubMed  Google Scholar 

  • Jost, P., Griffith, O. H., Capaldi, R. A., Vanderkooi, G. 1973. Identification and extent of fluid bilayer regions in membranous cytochrome oxidase.Biochim. Biophys. Acta 311:141

    PubMed  Google Scholar 

  • Juliano, R. L., Kimelberg, H. K., Papahadjopoulos, D. 1971. Synergistic effects of a membrane protein (spectrin) and Ca2+ on the Na+ permeability of phospholipid vesicles.Biochim. Biophys. Acta 241:894

    PubMed  Google Scholar 

  • Kimelberg, H. K., Papahadjopoulos, D. 1971a. Phospholipid-protein interactions: Membrane permeability correlated with monolayer “penetration”.Biochim. Biophys. Acta 233:805

    PubMed  Google Scholar 

  • Kimelberg, H. K., Papahadjopoulos, D. 1971b. Interactions of basic proteins with phospholipid membranes: Binding and changes in the sodium permeability of phosphatidylserine.J. Biol. Chem. 246:1142

    PubMed  Google Scholar 

  • Kimelberg, H. K., Papahadjopoulos, D. 1974. Effects of phospholipid acyl chain fluidity, phase transitions and cholesterol on (Na++K+)-stimulated adenosine triphosphatase.J. Biol. Chem. 249:1071

    PubMed  Google Scholar 

  • London, Y., Demel, R. A., Geurts Van Kessel, W. S. M., Zahler, P., Van Deenen, L. L. M. 1974. The interaction of the “Folch-Lees” protein with lipids at the airwater interface.Biochim. Biophys. Acta 332:69

    Google Scholar 

  • Lowden, J. A., Moscarello, M. A., Morecki, R. 1966. The isolation and characterization of an acid-soluble protein from myelin.Canad. J. Biochem. 44:567

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., Scott, R. E. 1972. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane.Proc. Nat. Acad. Sci. 69:1445

    PubMed  Google Scholar 

  • Moscarello, M. A., Gagnon, J., Wood, D. D., Anthony, J., Epand, R. 1973. Conformational flexibility of a myelin protein.Biochemistry 12:3402

    PubMed  Google Scholar 

  • Papahadjopoulos, D. 1970. Phospholipid model membranes. III. Antagonistic effects of Ca2+ and local anaesthetics on the permeability of phosphatidylserine vesicles.Biochim. Biophys. Acta 211:467

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Cowden, M., Kimelberg, H. 1973a. Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity.Biochim. Biophys. Acta 330:8

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., Isac, T. 1973b. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol.Biochim. Biophys. Acta 311:330

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Kimelberg, H. K. 1973. Phospholipid vesicles (liposomes) as models for biological membranes: Their properties and interactions with cholesterol and proteins.In: Progress in Surface Science S. G. Davison, editor. Vol. 4, part 2, pp. 141–232. Pergamon Press, Oxford, England

    Google Scholar 

  • Papahadjopoulos, D., Miller, N. 1967. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals.Biochim. Biophys. Acta 135:624

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Nir, S., Ohki, S. 1972. Permeability properties of phospholipid membranes: Effect of cholesterol and temperature.Biochim. Biophys. Acta 266:561

    PubMed  Google Scholar 

  • Singer, S. J. 1974. The molecular organization of membranes.Annu. Rev. Biochem. 43:805

    PubMed  Google Scholar 

  • Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720

    PubMed  Google Scholar 

  • Steim, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. N., Rader, R. L. 1969. Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane.Proc. Nat. Acad. Sci. (U.S.) 63:104

    Google Scholar 

  • Tennenbaum, D., Folch-Pi, J. 1966. The preparation and characterization of watersoluble proteolipid protein from bovine brain white matter.Biochim. Biophys. Acta 115:141

    PubMed  Google Scholar 

  • Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment.Proc. Nat. Acad. Sci. 71:214

    PubMed  Google Scholar 

  • Vanderkooi, G., Green, D. E. 1970. Biological membrane structure. I. The protein crystal model for membranes.Proc. Nat. Acad. Sci. 66:615

    PubMed  Google Scholar 

  • verkleij, A. J., DeKruyff, B., Ververgaert, P. H. J. Th., Tocanne, J. F., Van Deenen, L. L. M. 1974. The influence of pH, Ca2+ and protein on the thermotropic behavior of the negatively charged phospholipid, phosphatidylglycerol.Biochim. Biophys. Acta 339:432

    PubMed  Google Scholar 

  • Ververgaert, P. H. J. Th., Verkleij, A. J., Elbers, P. F., Van Deenen, L. L. M. 1973. Analysis of the crystallization process in lecithin liposomes: A freeze-etch study.Biochim. Biophys. Acta 311:320

    PubMed  Google Scholar 

  • Wood, D. D., Gagnon, J., Finch, P. R., Moscarello, M. A. 1971. The isolation of an electrophoretically homogenous protein from myelin.Amer. Soc. Neurochem. Trans. 2(1):117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papahadjopoulos, D., Vail, W.J. & Moscarello, M. Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: Studies on ultrastructure, phase transitions and permeability. J. Membrain Biol. 22, 143–164 (1975). https://doi.org/10.1007/BF01868168

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868168

Keywords

Navigation