Skip to main content
Log in

The possible role of fixed membrane surface charges in acetylcholine release at the frog neuromuscular junction

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Bass and Moore [Proc. Nat. Acad. Sci. 55:1214 (1966)] proposed that the vesicles containing acetylcholine undergo Brownian motion in the nerve terminals. Acetylcholine is released whenever a vesicle touches the inner face of the axolemma of the nerve terminal. The frequency at which contact is made is limited by an energy barrier that must be overcome before the vesicle can touch the axolemma. The energy barrier has two components. (1) An electrostatic repulsion between positive, fixed charges on the vesicles and a relatively positive potential at the face of the axolemma that is generated by the resting potential. (2) A layer of water molecules held to the vesicle by the surface charge. This model is inconsistent with experimental data. A modification of the model is presented. Both the vesicle and the inner face of the axolemma are assumed to have fixed, negative surface charges that are responsible for the energy barrier. By a series of simplifications, the model leads to two predictions. (1) A plot of the ln (miniature end plate potentials/sec) as a function of the concentration of ions in the axoplasm)−0.5 should give a straight line. (2) A plot of ln (end plate potential amplitudes) as a function of (extracellular Ca++ concentration)−0.5 should give a straight line. These predictions are shown to agree reasonably well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bass, L., Moore, W. J. 1966. Electrokinetic mechanism of miniature postsynaptic potentials.Proc. Nat. Acad. Sci. 55:1214

    PubMed  Google Scholar 

  • Blioch, Z. L., Glagoleva, I. M., Liberman, E. A., Nenashev, V. A. 1968. A study of the mechanisms of quantal transmitter release at a chemical synapse.J. Physiol. 199:11

    PubMed  Google Scholar 

  • Camejo, G., Villegas, G. M., Barnola, F. V., Villegas, R. 1969. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid,Dosidicus gigas.Biochim. Biophys. Acta 193:247

    PubMed  Google Scholar 

  • Chandler, W. K., Hodgkin, A. L., Meves, H. 1965. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.J. Physiol. 180:821

    PubMed  Google Scholar 

  • Danforth, W. H., Helmrich, E. 1964. Regulation of glycolysis in muscle. I. The conversion of phosphorylaseb to phosphorylasea in frog sartorius muscle.J. Biol. Chem. 239:3133

    PubMed  Google Scholar 

  • Dodge, F. A., Jr., Rahamimoff, R. 1967. Co-operative action of calcium ions in transmitter release at the neuromuscular junction.J. Physiol. 193:419

    PubMed  Google Scholar 

  • Drost-Hansen, W. 1971. Structure and properties of water at biological interfaces.In: Chemistry of the Cell Interface. H. D. Brown, editor. p. 2. Academic Press Inc., New York

    Google Scholar 

  • Fatt, P., Katz, B. 1952. Spontaneous subthreshold activity at motor nerve endings.J. Physiol. 117:109

    PubMed  Google Scholar 

  • Furshpan, E. J. 1956. The effects of osmotic pressure changes on the spontaneous activity at motor nerve endings.J. Physiol. 134:689

    PubMed  Google Scholar 

  • Gage, P. W. 1965. The effect of methyl, ethyl andn-propyl alcohol on neuromuscular transmission in the rat.J. Pharmacol. 150:236

    Google Scholar 

  • Glasstone, S., Laider, K. J., Eyring, H. 1941. The Theory of Rate Processes. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

  • Hubbard, J. I. 1970. Mechanism of transmitter release.Prog. Biophys. Mol. Biol. 21:33

    PubMed  Google Scholar 

  • Hubbard, J. I., Jones, S. F., Landau, E. M. 1967. The relationship between the state of nerve-terminal polarization and the liberation of acetylcholine.Ann. N.Y. Acad. Sci. 144:459

    PubMed  Google Scholar 

  • Hubbard, J. I., Jones, S. F., Landau, E. M. 1968a. On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses.J. Physiol. 196:75

    PubMed  Google Scholar 

  • Hubbard, J. I., Jones, S. F., Landau, E. M. 1968b. An examination of the effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals.J. Physiol. 197:639

    PubMed  Google Scholar 

  • Jenkinson, D. H. 1957. The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction.J. Physiol. 138:434

    PubMed  Google Scholar 

  • Katz, B. 1969. The Release of Neural Transmitter Substances. Liverpool University Press, Liverpool

    Google Scholar 

  • Katz, B., Miledi, R. 1965. The effect of calcium on acetylcholine release from motor nerve terminals.Proc. Roy. Soc. B. (London) 161:496

    Google Scholar 

  • Kita, H., Van der Kloot, W. 1971. The effects of changing the osmolarity of the Ringer on acetylcholine release at the frog neuromuscular junction.Life Sci. 10:1423

    Google Scholar 

  • Landau, E. M., Kwanbunbumpen, S. 1969. Morphology of motor nerve terminals subjected to polarizing currents.Nature 221:271

    PubMed  Google Scholar 

  • Okada, K. 1967. Effects of alcohols and acetone on the neuromuscular junction of frog.Jap. J. Physiol. 17:245

    PubMed  Google Scholar 

  • Quastel, D. M. J., Hackett, J. T., Cooke, J. D. 1971. Calcium: Is it required for transmitter secretion?Science 172:1034

    PubMed  Google Scholar 

  • Remler, M. P. 1973. A semiquantitative theory of synaptic vesicle movements.Biophys. J. 13:104

    PubMed  Google Scholar 

  • Schellman, J. A. 1957. Dielectric saturation of associated liquids.J. Chem. Phys. 26:1225

    Google Scholar 

  • Shaw, D. J. 1970. Introduction to Colloid Chemistry. 2nd Ed. Butterworths, London

    Google Scholar 

  • Thesleff, S. 1959. Motor end-plate ‘desensitization’ by respective nerve stimuli.J. Physiol. 148:659

    PubMed  Google Scholar 

  • Van der Kloot, W. 1970. The effects of potentiators and of anticholinesterases on the kinetics of calcium uptake by isolated sarcoplasmic reticulum from the lobster and the rat.Comp. Gen. Pharmacol. 1:209

    PubMed  Google Scholar 

  • Vos, J., Kuriyama, K., Roberts, E. 1968. Electrophoretic mobilities of brain sub-cellular particles and binding of γ-aminobutyric acid, acetylcholine, norepinephrine, and 5-hydroxytryptamine.Brain Res. 9:224

    PubMed  Google Scholar 

  • Walz, D., Bamberg, E., Lauger, P. 1969. Non-linear electrical effects in lipid bilayer membranes. I. Ion injection.Biophys. J. 9:1150

    PubMed  Google Scholar 

  • Wiese, G. R., Healy, T. W. 1970. Effect of particle size on colloid stability.Trans. Faraday Soc. 66:490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Kloot, W., Kita, H. The possible role of fixed membrane surface charges in acetylcholine release at the frog neuromuscular junction. J. Membrain Biol. 14, 365–382 (1973). https://doi.org/10.1007/BF01868085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868085

Keywords

Navigation