Skip to main content
Log in

The adrenal medulla: A model for studies of hormonal and neuronal storage and release mechanisms

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

We have observed that phospholipids and protein of the catecholamine (CA) storage granules, i.e. the chromaffin granules, interact in anin vitro system to form liposomal particles, which in many respects resemble the intact matrix of the bovine chromaffin granule. A model has been suggested which consists of an aqueous phase, containing the acidic chromogranins and intact dopamine-β-hydroxylase (DBH) ATP and CA, embedded in a liquid crystal of the matrix phospholipids. Ca2+ may play a significant role in the sequence of functional transitions of such an organelle, not only in the accumulation of Ca2+, as during the secretory phase of the intact cell, but also as the agent inducing a separation of the outer membrane bilayer from the matrix phase to be released, as during exocytosis. Furthermore, a liposome model of the matrix may also tentatively explain the occurrence of intact matrices in the interstitium of stimulated glands.

Recent evidence for the identity between chromogranin A and DBH subunits have been summarized and a possible role for the inactive subunits in the ionic binding of ATP and CA in the aqueous phase of the matrix is discussed.

A role of Ca2+ and cyclic AMP in the mediation ofβ-adrenergic modulation is postulated on the basis of our recent work on acetylcholine-induced release of CA from perfused and stimulated bovine adrenals. We conclude that such aβ-adrenergic modulation is secondary to that of the cholinergic response. Hence, this activation is able to enhance the output induced by mild cholinergic stimulation although insufficient to evoke a CA release by itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Banks, Calcium and Cellular Functions (Cuthbert, A. W., ed.) pp. 148–162, Macmillan and Co., London 1970.

    Google Scholar 

  2. R. P. Rubin, Pharmacol. Rev. 22, 389–428 (1970).

    Google Scholar 

  3. L. B. Geffen and B. G. Livett, Physiol. Rev. 51, 98–157 (1972).

    Google Scholar 

  4. L. Stjärne, Handbuch der experimentellen Pharmakologie (Blaschko, H. and Muscholl, E., eds.) XXXIII, pp. 231–269, Springer Verlag, Heidelberg 1972.

    Google Scholar 

  5. A. D. Smith and H. Winkler, Handbuch der experimentellen Pharmakologie (Blaschko, H. and Muscholl, E., eds.) XXXIII, pp. 538–617, Springer Verlag, Heidelberg 1972.

    Google Scholar 

  6. W. W. Douglas, Brit. J. Pharmacol. 34, 451–474 (1968).

    Google Scholar 

  7. H. Blaschko, R. C. Comline, F. Schneider, M. Silver and A. D. Smith, Nature (Lond.) 215, 58–59 (1967).

    Google Scholar 

  8. N.-Å. Hillarp, Adrenergic Mechanism, Ciba Found. Symp. (Wolstenholme, G. E. W. and O'Conner, M. O., eds.) pp. 481, Churchill, London 1960.

    Google Scholar 

  9. H. Blaschko, C. V. Born, A. D'Iorio and N. Eade, J. Physiol. (Lond.) 133, 548–557 (1956).

    Google Scholar 

  10. N.-Å. Hillarp, Acta physiol. scand. 47, 271–275 (1959).

    Google Scholar 

  11. H. Blaschko and K. B. Helle, J. Physiol. (Lond.) 169, 120P (1963).

  12. K. B. Helle, Studies of Chromogranin A, Universitetsfor-laget, Bergen 1971.

    Google Scholar 

  13. K. H. Berneis, A. Pletcher and M. DaPrada, Nature (Lond.) 224, 281–283 (1969).

    Google Scholar 

  14. K. B. Helle, Biochim. Biophys. Acta 318, 181–196 (1973).

    Google Scholar 

  15. K. B. Helle and G. Serck-Hanssen, Frontiers in Catechol-amine Research (Usdin, E. and Snyder, S. H., eds.) pp. 467–469, Pergamon Press, New York 1973.

    Google Scholar 

  16. G. Serck-Hanssen and E. N. Christiansen, Biochim. Biophys. Acta 307, 404–414 (1973).

    Google Scholar 

  17. G. Serck-Hanssen, Biochem. Pharmacol. 23, 2225–2234 (1974).

    Google Scholar 

  18. C. F. Poyart, J. Papayoanou and G. G. Nahas, J. Physiol. (Paris) 60, suppl., 523 (1968).

    Google Scholar 

  19. K. B. Helle and G. Serck-Hanssen, Pharmacol. Res. Comm. 1, 25–29 (1969).

    Google Scholar 

  20. K. B. Helle, Mol. Pharmacol. 2, 298–310 (1966).

    Google Scholar 

  21. K. B. Helle, Biochim. Biophys. Acta 245, 80–93 (1971).

    Google Scholar 

  22. G. Serck-Hanssen, Biochem. Pharmacol. 20, 361–373 (1971).

    Google Scholar 

  23. G. Serck-Hanssen, Acta physiol. scand. 86, 289–298 (1972).

    Google Scholar 

  24. Å. Bertler, A. Carlsson and E. Rosengren, Acta physiol. scand. 44, 273–292 (1958).

    Google Scholar 

  25. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  26. J. W. Gibb, S. Spector and S. Udenfriend, Mol. Pharmacol. 3, 473–478 (1967).

    Google Scholar 

  27. K. B. Helle, Biochim. Biophys. Acta 117, 107–110 (1966).

    Google Scholar 

  28. K. B. Helle, T. Flatmark, G. Serck-Hanssen and S. Lönning, Biochim. Biophys. Acta 226, 1–9 (1971).

    Google Scholar 

  29. K. B. Helle, Biochim. Biophys. Acta 318, 167–180 (1973).

    Google Scholar 

  30. M. Vulpian, C.R. Acad. Sci. (Paris) 43, 663 (1856).

    Google Scholar 

  31. F. Stolz, Ber. Deutsch. Chem. Gesellsch. 37, 4149–4154 (1904).

    Google Scholar 

  32. H. Blaschko and A. D. Welch, Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 219, 17–22 (1953).

    Google Scholar 

  33. N.-Å. Hillarp, S. Lagerstedt and B. Nilson, Acta physiol. scand. 29, 251–263 (1953).

    Google Scholar 

  34. P. Banks, Biochem. J. 95, 490–496 (1965).

    Google Scholar 

  35. A. D. Smith and H. Winkler, Biochem. J. 103, 483–492 (1967).

    Google Scholar 

  36. W. J. Smith and N. Kirshner, Mol. Pharmacol. 3, 52–62 (1967).

    Google Scholar 

  37. R. E. Coupland, Nature (Lond.) 217, 384–388 (1968).

    Google Scholar 

  38. R. E. Coupland and D. Hopwood, J. Anat. 100, 227 (1966).

    Google Scholar 

  39. R. E. Coupland, Subcellular Organization and Function in Endocrine Tissues. Mem. Soc. Endocrin., 19 (Heller, H. and Lederis, K., eds.) pp. 611–633, Cambridge University Press 1971.

    Google Scholar 

  40. B. Agostini and G. Taugner, Histochemie 33, 255–272 (1973).

    Google Scholar 

  41. H. Lagercrantz, L. Stjärne, T. Flatmark and K. B. Helle, Biochem. Pharmacol. 22, 3005–3011 (1973).

    Google Scholar 

  42. F. H. Schneider, A. D. Smith and H. Winkler, Br. J. Pharmacol. Chemother. 31, 94–104 (1967).

    Google Scholar 

  43. H. Winkler, Phil. Trans. Roy. Soc. Lond. B, 261, 293–303 (1971).

    Google Scholar 

  44. F. H. Schneider, Biochem. Pharmacol. 21, 2627–2634 (1972).

    Google Scholar 

  45. K. B. Helle, Biochem. J. 109, 43P-44P (1968).

    Google Scholar 

  46. R. Myroie and H. Koenig, FEBS Letters 12, 121–124 (1971).

    Google Scholar 

  47. K. B. Helle, Biochim. Biophys. Acta 245, 94–104 (1971).

    Google Scholar 

  48. G. Taugner and A. Wähler, Naunyn-Schmiedeberg's Arch. Pharmacol. 282, 261–278 (1974).

    Google Scholar 

  49. G. Taugner and A. Wähler, Naunyn-Schniedeberg's Arch. Pharmacol. 282, 279–293 (1974).

    Google Scholar 

  50. W. Stoeckenius, J. Cell. Biol. 12, 221–229 (1962).

    Google Scholar 

  51. O. Diner, C.R. Acad. Sci. Paris 265D, 616–619 (1967).

    Google Scholar 

  52. L. G. Elfwin, J. Ultrastruct. 12, 263–286 (1965).

    Google Scholar 

  53. J. L. Borowitz, K. Fuwa and N. Weiner, Nature (Lond.) 205, 42–43 (1965).

    Google Scholar 

  54. J. L. Borowitz, Biochem. Pharmacol. 18, 715–723 (1969).

    Google Scholar 

  55. R. G. Rahwan and J. L. Borowitz, J. Pharmac. Sci. 62, 1911–1923 (1973).

    Google Scholar 

  56. K. H. Berneis, M. DaPrada and A. Pletcher, Nature (Lond.) 248, 604–605 (1974).

    Google Scholar 

  57. J. M. Trifaró, Frontiers in Catecholamine Research (Usdin, E. and Snyder, S. H., eds.) pp. 501–503, Pergamon Press, New York 1973.

    Google Scholar 

  58. J. T. Buckley and J. N. Hawthorne, J. Biol. Chem. 247, 7218–7223 (1972).

    Google Scholar 

  59. P. Laduron and F. Belpaire, Biochem. Pharmacol. 17, 1127–1140 (1968).

    Google Scholar 

  60. K. B. Helle, New Aspects of Storage and Release Mechanisms of Catecholamines Bayer Symp. II (Schümann, H. J. and Kroneberg, G., eds.) pp. 45–56, Springer Verlag, Berlin 1970.

    Google Scholar 

  61. A. Kirshner and N. Kirshner, Biochim. Biophys. Acta 181, 219–225 (1969).

    Google Scholar 

  62. H. Hörtnagl, H. Lochs and H. Winkler, J. Neurochem. 22, 197–199 (1974)

    Google Scholar 

  63. H. Hörtnagl, H. Winkler and H. Lochs, Biochem. J. 129, 187–195 (1972).

    Google Scholar 

  64. H. Winkler and H. Hörtnagl, Frontiers in Catecholamine Research (Usdin, E. and Snyder, S. H., eds.) pp. 415–421, Pergamon Press, New York 1973.

    Google Scholar 

  65. T. Silsand and T. Flatmark, Biochim. Biophys. Acta, 359, 257–266 (1974).

    Google Scholar 

  66. A. Foldes, P. L. Jeffrey, B. N. Preston and L. Austin, Biochem. J. 123, 1209–1217 (1972).

    Google Scholar 

  67. S. Friedman and S. Kaufman, J. Biol. Chem. 240, 4763–4773 (1965).

    Google Scholar 

  68. E. F. Wallace, M. J. Frantz and W. Lovenberg, Proc. Natl. Acad. Sci., U.S. 70, 2253–2255 (1973).

    Google Scholar 

  69. D. Aunis, M.-T. Miras-Portugal and P. Mandel, Biochim. Biophys. Acta 327, 313–327 (1973).

    Google Scholar 

  70. D. Aunis, M.-T. Miras-Portugal and P. Mandel, Biochim. Biophys. Acta 365, 259–273 (1974).

    Google Scholar 

  71. J. E. Craine, G. H. Daniels and S. Kaufman, J. Biol. Chem. 248, 7838–7844 (1973).

    Google Scholar 

  72. A. Foldes, P. L. Jeffrey, B. N. Preston and L. Austin, J. Neurochem. 20, 1431–1442 (1973).

    Google Scholar 

  73. P. Banks, Biochem. J. 101, 536–541 (1966).

    Google Scholar 

  74. W. W. Douglas and A. M. Poisner, J. Physiol. (Lond.) 183, 249–256 (1966).

    Google Scholar 

  75. P. Banks and K. B. Helle, Biochem. J. 97, 40C-41C (1965).

    Google Scholar 

  76. O. H. Viveros, L. Arqueros and N. Kirshner, Life Sciences 7, 609–618 (1968).

    Google Scholar 

  77. E. D. P. De Robertis and A. Vaz Ferreira, Exp. Cell. Res. 12, 568–574 (1957).

    Google Scholar 

  78. O. H. Viveros, L. Arqueros and N. Kirshner, Science 165, 911–913 (1969).

    Google Scholar 

  79. T. A. Slotkin and N. Kirshner, Biochem. Pharmacol. 22, 205–219 (1973).

    Google Scholar 

  80. R. A. Rush and L. B. Geffen, Circ. Rec. 31, 444–452 (1972).

    Google Scholar 

  81. J. M. Trifaró, A. M. Poisner and W. W. Douglas, Biochem. Pharmacol. 16, 2095–2100 (1967).

    Google Scholar 

  82. A. M. Poisner, J. M. Trifaró and W. W. Douglas, Biochem. Pharmacol. 16, 2101–2108 (1967).

    Google Scholar 

  83. G. Serck-Hanssen, Acta physiol. scand. suppl. 330, abstr. 63 (1969).

  84. O. H. Viveros, L. Arqueros and N. Kirshner, Mol. Pharmacol. 5, 342–349 (1969).

    Google Scholar 

  85. I. Benedeczky and A. D. Smith, Z. Zellforsch. 124, 367–386 (1972).

    Google Scholar 

  86. A. M. Poisner, Advances in Biochemical Psychopharmacology, (Costa, E. and Giacobini, E., eds.) Vol. 2, pp. 95–108, Raven Press, New York 1970.

    Google Scholar 

  87. S. Berl, S. Puszkin and W. J. Nicklas, Science 179, 441–446 (1973).

    Google Scholar 

  88. P. Banks, Biochem. J. 101, 18C-20C (1966).

    Google Scholar 

  89. A. M. Poisner and M. Hava, Mol. Pharmacol. 6, 407–415 (1970).

    Google Scholar 

  90. F. Izumi, M. Oka and T. Kashimoto, Med. J. Osaka Univ. 21, 241–249 (1971).

    Google Scholar 

  91. M. J. Peach, Proc. Natl. Acad. Sci., U.S. 69, 834–836 (1972).

    Google Scholar 

  92. S. D. Jaanus and R. P. Rubin, J. Physiol. (Lond.) 237, 465–476 (1974).

    Google Scholar 

  93. G. Serck-Hanssen, T. Christoffersen, J. Mörland and J.-B. Osnes, Eur. J. Pharmacol. 19, 297–300 (1972).

    Google Scholar 

  94. A. Guidotti, B. Zivkovic, R. Pfeiffer and E. Costa, Naunyn-Schmiedeberg's Arch. Pharmacol. 278, 193–206 (1973).

    Google Scholar 

  95. E. Bülbring, J. H. Burn and F. J. DeElio, J. Physiol. (Lond.) 107, 222–232 (1948).

    Google Scholar 

  96. J. Malméjac, J. Physiol. (Lond.) 130, 497–512 (1955).

    Google Scholar 

  97. G. Serck-Hanssen Sövik, Dissertation Thesis, University of Oslo, 1974.

  98. E. Costa and A. Guidotti, New Concepts of Neurotransmitter Regulation (A. J. Mandell, ed.) pp. 135–152, Plenum Publ. Corp., New York-London 1973.

    Google Scholar 

  99. A. Guidotti and E. Costa, Science 179, 902–904 (1973).

    Google Scholar 

  100. T. Deguchi and J. Axelrod, Proc. Natl. Acad. Sci., U.S. 69, 2208–2211 (1972).

    Google Scholar 

  101. D. C. Klein and J. L. Weller, J. Pharm. Exp. Ther. 186, 516–527 (1973).

    Google Scholar 

  102. U. Otten, F. Oesch and H. Thoenen, Naunyn-Schmiedeberg's Arch. Pharmacol. 280, 129–140 (1973).

    Google Scholar 

  103. I. B. Black, J. A. Hendry and L. L. Iversen, Nature, New Biol. (Lond.) 231, 27–29 (1971).

    Google Scholar 

  104. H. Thoenen, R. Kettler, W. Burkard and A. Saner, Naunyn-Schmiedeberg's Arch. Pharmacol. 270, 146–160 (1971).

    Google Scholar 

  105. G. Serck-Hanssen, unpublished results, 1968.

  106. A. Guidotti, C. C. Mao and E. Costa, Frontiers in Catecholamine Research (Usdin, E. and Snyder, S. H., eds.) pp. 231–236, Pergamon Press, New York 1973.

    Google Scholar 

  107. J. Häggendal, New Aspects of Storage and Release Mechanisms of Catecholamines, Bayer Symp. II, (Schümann, H.J. and Kroneberg, G., eds.) pp. 100–109, Springer Verlag, Berlin 1970.

    Google Scholar 

  108. F. Z. Langer, E. Adler, M. A. Enero and F. J. E. Stefano, XXVth Int. Congr. Physiol. Sci. p. 335 (1971).

  109. K. Starke, Naunyn-Schmiedeberg's Arch. Pharmacol. 275, 11–23 (1972).

    Google Scholar 

  110. R. E. Coupland, The Natural History of the Chromaffin Cell, 279 pp., Longmans, London 1965.

    Google Scholar 

  111. F. D. Prentice and J. G. Wood, Anat. Rec. 178, 441 (1974).

    Google Scholar 

  112. A. G. E. Pearse, J. Histochem. Cytochem. 17, 303–313 (1969).

    Google Scholar 

  113. W. F. Ganong, Fedn. Proc. 32, 1782–1784 (1973).

    Google Scholar 

  114. D. Porte and R. P. Robertson, Fedn. Proc. 32, 1792–1796 (1973).

    Google Scholar 

  115. J. F. Kuo and P. Greengard, Proc. Natl. Acad. Sci., U.S. 64, 1349–1355 (1969).

    Google Scholar 

  116. F. Labrie, S. Lemaire, G. Poirier, G. Pelletier and R. Boucher, J. Biol. Chem. 246, 7311–7317 (1971).

    Google Scholar 

  117. J. M. Trifaró and J. Dworkind, Mol. Pharmacol. 7, 52–65 (1971).

    Google Scholar 

  118. J. T. Stull, C. O. Brostrom and E. G. Krebs, J. Biol. Chem. 247, 5272–5274 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helle, K.B., Serck-Hanssen, G. The adrenal medulla: A model for studies of hormonal and neuronal storage and release mechanisms. Mol Cell Biochem 6, 127–146 (1975). https://doi.org/10.1007/BF01732006

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732006

Keywords

Navigation