Skip to main content

Isolation and Purification of Chromaffin Granules from Adrenal Glands and Cultured Neuroendocrine Cells

  • Protocol
  • First Online:
Chromaffin Cells

Abstract

Chromaffin granules isolated from adrenal glands constitute a powerful experimental tool to the study of secretory vesicle components and their participation in fusion and docking processes, vesicle aggregation, and interactions with cytosolic components. Although it is possible to isolate and purify chromaffin granules from adrenal glands of different species, bovine adrenal glands are the most used tissue source due to its easy handling and the large amount of granules that can be obtained from this tissue. In this chapter, we describe an easy-to-use and short-term protocol for efficiently obtaining highly purified chromaffin granules from bovine adrenal medulla. We additionally include protocols to isolate granules from cultured bovine chromaffin cells and PC12 cells, as well as a section to obtain chromaffin granules from mouse adrenal glands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabner CP, Price SD, Lysakowski A, Fox AP (2005) Mouse chromaffin cells have two populations of dense core vesicles. J Neurophysiol 94:2093–2104

    Article  PubMed  Google Scholar 

  2. Ardiles AO, Maripillán J, Lagos VL, Toro R, Mora IG, Villarroel L, Alés E, Borges R, Cárdenas AM (2006) A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 99:29–41

    Article  CAS  PubMed  Google Scholar 

  3. Crivellato E, Nico B, Ribatti D (2008) The chromaffin vesicle: advances in understanding the composition of a versatile, multifunctional secretory organelle. Anat Rec (Hoboken) 291:1587–1602

    Article  Google Scholar 

  4. Borges R, Díaz-Vera J, Domínguez N, Arnau MR, Machado JD (2010) Chromogranins as regulators of exocytosis. J Neurochem 114rie:335–343

    Article  Google Scholar 

  5. Bastiaensen E, De Block J, De Potter WP (1988) Neuropeptide Y is localized together with enkephalins in adrenergic granules of bovine adrenal medulla. Neuroscience 25:679–686

    Article  CAS  PubMed  Google Scholar 

  6. Fried G, Wikström LM, Franck J, Rökaeus A (1991) Galanin and neuropeptide Y in chromaffin granules from the guinea-pig. Acta Physiol Scand 142:487–493

    Article  CAS  PubMed  Google Scholar 

  7. Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324–7332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wegrzyn JL, Bark SJ, Funkelstein L, Mosier C, Yap A, Kazemi-Esfarjani P, La Spada AR, Sigurdson C, O'Connor DT, Hook V (2010) Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuroeffectors for cell-cell communication. J Proteome Res 9:5002–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wegrzyn J, Lee J, Neveu JM, Lane WS, Hook V (2007) Proteomics of neuroendocrine secretory vesicles reveal distinct functional systems for biosynthesis and exocytosis of peptide hormones and neurotransmitters. J Proteome Res 6:1652–1665

    Article  CAS  PubMed  Google Scholar 

  11. Cárdenas AM, Marengo FD (2016) How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 137:867–879

    Article  PubMed  Google Scholar 

  12. Marengo FD, Cárdenas AM (2018) How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 470:155–167

    Article  CAS  PubMed  Google Scholar 

  13. Álvarez de Toledo G, Montes MÁ, Montenegro P, Borges R (2018) Phases of the exocytotic fusion pore. FEBS Lett 592:3532–3541

    Article  PubMed  Google Scholar 

  14. González-Jamett AM, Báez-Matus X, Hevia MA, Guerra MJ, Olivares MJ, Martínez AD, Neely A, Cárdenas AM (2010) The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells. J Neurosci 30:10683–10691

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang CW, Hsiao YT, Jackson MB (2021) Synaptophysin regulates fusion pores and exocytosis mode in chromaffin cells. J Neurosci 41:3563–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiss AN, Anantharam A, Bittner MA, Axelrod D, Holz RW (2014) Lumenal protein within secretory granules affects fusion pore expansion. Biophys J 107:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abbineni PS, Bittner MA, Axelrod D, Holz RW (2019) Chromogranin A, the major lumenal protein in chromaffin granules, controls fusion pore expansion. J Gen Physiol 151:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosé SD, Lejen T, Casaletti L, Larson RE, Pene TD, Trifaró JM (2003) Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J Neurochem 85:287–298

    Article  PubMed  Google Scholar 

  19. González-Jamett AM, Momboisse F, Guerra MJ, Ory S, Báez-Matus X, Barraza N, Calco V, Houy S, Couve E, Neely A, Martínez AD, Gasman S, Cárdenas AM (2013) Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells. PLoS One 8:e70638

    Article  PubMed  PubMed Central  Google Scholar 

  20. Olivares MJ, González-Jamett AM, Guerra MJ, Baez-Matus X, Haro-Acuña V, Martínez-Quiles N, Cárdenas AM (2014) Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells. PLoS One 9:e99001

    Article  PubMed  PubMed Central  Google Scholar 

  21. González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baéz-Matus X, Vásquez-Navarrete J, Momboisse F, Martinez-Quiles N, Cárdenas AM (2017) The F-actin binding protein cortactin regulates the dynamics of the exocytotic fusion pore through its SH3 domain. Front Cell Neurosci 11:130

    Article  PubMed  PubMed Central  Google Scholar 

  22. Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granule. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  23. Malosio M, Giordano T, Laslop A, Meldolesi J (2004) Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. J Cell Sci 117:743–749

    Article  CAS  PubMed  Google Scholar 

  24. Pollard HB, Zinder O, Hoffman PG, Nikodejevic O (1976) Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH. J Biol Chem 251:4544–4550

    Article  CAS  PubMed  Google Scholar 

  25. Akeson MA, Deamer DW (1989) Steady-state catecholamine distribution in chromaffin granule preparations: a test of the pump-leak hypothesis of general anesthesia. Biochemistry 28:5120–5127

    Article  CAS  PubMed  Google Scholar 

  26. Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schägger H (1998) Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 273:10939–10947

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Z, Peng SB, Crider BP, Andersen P, Xie XS, Stone DK (1999) Recombinant SFD isoforms activate vacuolar proton pumps. J Biol Chem 274(22):15913–15919. https://doi.org/10.1074/jbc.274.22.15913

    Article  CAS  PubMed  Google Scholar 

  28. Bankston LA, Guidotti G (1996) Characterization of ATP transport into chromaffin granule ghosts. Synergy of ATP and serotonin accumulation in chromaffin granule ghosts. J Biol Chem 271:17132–17138

    Article  CAS  PubMed  Google Scholar 

  29. Sakamoto S, Miyaji T, Hiasa M, Ichikawa R, Uematsu A, Iwatsuki K, Shibata A, Uneyama H, Takayanagi R, Yamamoto A, Omote H, Nomura M, Moriyama Y (2014) Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity. Sci Rep 4:6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taugner G (1972) The effects of univalent anions on catecholamine fluxes and adenosine triphosphatase activity in storage vesicles from the adrenal medulla. Biochem J 130:969–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramu A, Pazoles CJ, Creutz CE, Pollard HB (1981) Catecholamine transport by isolated chromaffin granules. Influence of MgATP and a disulfonic stilbene on (R)-norepinephrine/epinephrine exchange and spontaneous epinephrine efflux. J Biol Chem 256:1229–1234

    Article  CAS  PubMed  Google Scholar 

  32. Deupree JD, Weaver JA (1984) Identification and characterization of the catecholamine transporter in bovine chromaffin granules using [3H] reserpine. J Biol Chem 259:10907–10912

    Article  CAS  PubMed  Google Scholar 

  33. Terland O, Grønberg M, Flatmark T (1991) The effect of calcium channel blockers on the H(+)-ATPase and bioenergetics of catecholamine storage vesicles. Eur J Pharmacol 207:37–41

    Article  CAS  PubMed  Google Scholar 

  34. Krieger-Brauer H, Gratzl M (1982) Uptake of Ca2+ by isolated secretory vesicles from adrenal medulla. Biochim Biophys Acta 691(1):61–70. https://doi.org/10.1016/0005-2736(82)90214-0

    Article  CAS  PubMed  Google Scholar 

  35. Bulenda D, Gratzl M (1985) Matrix free Ca2+ in isolated chromaffin vesicles. Biochemistry 24:7760–7765

    Article  CAS  PubMed  Google Scholar 

  36. Creutz CE, Scott JH, Pazoles CJ, Pollard HB (1982) Further characterization of the aggregation and fusion of chromaffin granules by synexin as a model for compound exocytosis. J Cell Biochem 18:87–97

    Article  CAS  PubMed  Google Scholar 

  37. Nir S, Stutzin A, Pollard HB (1987) Effect of synexin on aggregation and fusion of chromaffin granule ghosts at pH 6. Biochim Biophys Acta 903:309–318

    Article  CAS  PubMed  Google Scholar 

  38. Drust DS, Creutz CE (1988) Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331:88–91

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Creutz CE (1992) Regulation of the chromaffin granule aggregating activity of annexin I by phosphorylation. Biochemistry 31:9934–9939

    Article  CAS  PubMed  Google Scholar 

  40. Kreutzberger AJB, Kiessling V, Liang B, Seelheim P, Jakhanwal S, Jahn R, Castle JD, Tamm LK (2017) Reconstitution of calcium-mediated exocytosis of dense-core vesicles. Sci Adv 3:e1603208

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fowler VM, Pollard HB (1982) Chromaffin granule membrane-F-actin interactions are calcium sensitive. Nature 295:336–339

    Article  CAS  PubMed  Google Scholar 

  42. Morita K, Pollard HB (1985) Chromaffin granule-cytoskeleton interaction. Stabilization by F-actin of ATPase in purified chromaffin granule membranes. FEBS Lett 181:195–198

    Article  CAS  PubMed  Google Scholar 

  43. Smith AD, Winkler H (1967) A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem J 103:480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Díaz-Vera J, Morales YG, Hernández-Fernaud JR, Camacho M, Montesinos MS, Calegari F, Huttner WB, Borges R, Machado JD (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957

    Article  PubMed  PubMed Central  Google Scholar 

  45. García-Campos P, Báez-Matus X, Jara-Gutiérrez C, Paz-Araos M, Astorga C, Cea LA, Rodríguez V, Bevilacqua JA, Caviedes P, Cárdenas AM (2020) N-acetylcysteine reduces skeletal muscles oxidative stress and improves grip strength in dysferlin-deficient Bla/J mice. Int J Mol Sci 21:4293

    Article  PubMed Central  Google Scholar 

  46. Pardo MR, Estévez-Herrera J, Castañeyra L, Borges R, Machado JD (2017) Isolation of mouse chromaffin secretory vesicles and their division into 12 fractions. Anal Biochem 536:1–7

    Article  CAS  PubMed  Google Scholar 

  47. Cidon S, Nelson N (1983) A novel ATPase in the chromaffin granule membrane. J Biol Chem 258:2892–2898

    Article  CAS  PubMed  Google Scholar 

  48. Creutz CE (2010) Isolation of chromaffin granules. Curr Protoc Cell Biol Chapter 3:Unit 3.39.1-10

    PubMed  Google Scholar 

  49. Birinci Y, Preobraschenski J, Ganzella M, Jahn R, Park Y (2020) Isolation of large dense-core vesicles from bovine adrenal medulla for functional studies. Sci Rep 10:7540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morita K, Tomares SM, Pollard HB (1996) Enhancement by F-actin of MgATP-dependent dopamine uptake into isolated chromaffin granules. Biochem Mol Biol Int 40:61–66

    CAS  PubMed  Google Scholar 

  51. Damer CK, Creutz CE (1996) Calcium-dependent self-association of synaptotagmin I. J Neurochem 67:1661–1668

    Article  CAS  PubMed  Google Scholar 

  52. Brownawell AM, Creutz CE (1997) Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J Biol Chem 272:22182–22190

    Article  CAS  PubMed  Google Scholar 

  53. Shumilina EV, Khaitlina SY, Morachevskaya EA, Negulyaev YA (2003) Non-hydrolyzable analog of GTP induces activity of Na+ channels via disassembly of cortical actin cytoskeleton. FEBS Lett 547:27–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. María José Guerra and Daniela M. Ponce for providing images of adrenal glands. This work was supported by ACE210014 from ICM-ANID and FONDECYT 1220825 (to A.M.C.), Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Cárdenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

González-Jamett, A., Maldifassi, M.C., Cárdenas, A.M. (2023). Isolation and Purification of Chromaffin Granules from Adrenal Glands and Cultured Neuroendocrine Cells. In: Borges, R. (eds) Chromaffin Cells. Methods in Molecular Biology, vol 2565. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2671-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2671-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2670-2

  • Online ISBN: 978-1-0716-2671-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics