Skip to main content
Log in

Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: Characterization of Chinese hamster cell mutants defective in phosphoribosylpyrophosphate amidotransferase and phosphoribosylglycinamide synthetase and an examination of alternatives to the first step of purine biosynthesis

  • Published:
Somatic Cell Genetics

Abstract

Activities of the first three enzymes in the de novo purine biosynthetic pathway have been measured in cell-free extracts of the Chinese hamster ovary cell (CHO-K1) and two purine-requiring auxotrophs of this cell. AdeA has been found to be defective in phosphoribosylpryophosphate (PRPP) amidotransferase while AdeC has been found to be defective in glycinamide ribonucleotide (GAR) synthetase. Neither enzyme deficiency is due to the presence of an excess of diffusible inhibitor, and mixed extracts of AdeA and AdeC are capable of performing both enzymatic steps in a coupled assay. Assays of GAR formyltransferase show that it is present in AdeA and AdeC, indicating that these cell types are defective in only one enzyme each of the early purine biosynthetic enzymes. Using the AdeA mutant, analysis of alternatives to PRPP plus glutamine as substrates for the first step in the purine biosynthetic pathway showed that a common genetic unit must direct the synthesis for both PRPP plus glutamine and PRPP plus ammonia activities. Although ribose-5-phosphate plus ammonia can be used in cell-free extracts to perform the first step in purine biosynthesis, it is shown that this activity is apparently not used by intact CHO-K1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Henderson, J. F. (1972).Regulation of Purine Biosynthesis. ACS Monograph 170 (American Chemical Society, Washington, D.C.).

    Google Scholar 

  2. Martin, D. W., and Owen, N. T. (1972).J. Biol. Chem. 247:5477–5485.

    PubMed  Google Scholar 

  3. Raivio, K. O., and Seegmiller, J. E. (1973).Biochem. Biophys. Acta. 299:283–292.

    PubMed  Google Scholar 

  4. Holmes, E. W., Wyngaarden, J. B., and Kelley, W. N. (1973).J. Biol. Chem. 248:6035–6040.

    PubMed  Google Scholar 

  5. Becker, M. A., Kostel, P. J., Meyer, L. J., and Seegmiller, J. E. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:2749–2752.

    PubMed  Google Scholar 

  6. Green, C. D., and Martin, D. W. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:3698–3702.

    PubMed  Google Scholar 

  7. Bagnara, A. S., Letter, A. A., and Henderson, J. F. (1974).Biochem. Biophys. Acta 374:259–270.

    PubMed  Google Scholar 

  8. Reem, G. H., and Friend, C. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1630–1634.

    PubMed  Google Scholar 

  9. Jackson, R. C., Weber, G., and Morris, H. P. (1975).Nature 256:331–333.

    PubMed  Google Scholar 

  10. Graf, L. H., McRoberts, J. A., Harrison, T. M., and Martin, D. W. (1976).J. Cell Physiol. 88:331–342.

    PubMed  Google Scholar 

  11. Reem, G. H. (1974).J. Biol. Chem. 249:1696–1703.

    PubMed  Google Scholar 

  12. Reem, G. H. (1968).J. Biol. Chem. 243:5695–5701.

    PubMed  Google Scholar 

  13. Reem, G. H. (1972).J. Clin. Invest. 51:1058–1062.

    PubMed  Google Scholar 

  14. Nierlich, D. P., and Magasanik, B. (1965).J. Biol. Chem. 240:366–374.

    PubMed  Google Scholar 

  15. Herscovics, A., and Johnstone, R. M. (1964).Biochem. Biophys. Acta. 93:251–263.

    PubMed  Google Scholar 

  16. Kao, F. T., and Puck, T. T. (1968).Proc. Natl. Acad. Sci. U.S.A. 60:1275–1281.

    PubMed  Google Scholar 

  17. Kao, F. T., Johnson, R. T., and Puck, T. T. (1969).Science 164:312–314.

    PubMed  Google Scholar 

  18. Chu, E. H. Y., Sun, N. C., and Chang, C. C. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:3459–3463.

    PubMed  Google Scholar 

  19. Feldman, R. I., and Taylor, M. W. (1974).Biochem. Genet. 12:393–405.

    PubMed  Google Scholar 

  20. Feldman, R. I., and Taylor, M. W. (1975).Biochem. Genet. 13:227–234.

    PubMed  Google Scholar 

  21. Patterson, D. (1975).Somat. Cell Genet. 1:91–110.

    PubMed  Google Scholar 

  22. Tu, A. S., and Patterson, D. (1977).Biochem. Genet. 15:195–210.

    PubMed  Google Scholar 

  23. Holmes, E. W., King, G. L., Leyva, A., and Singer, S. C. (1976).Proc. Natl. Acad. Sci. U.S.A. 70:2458–2461.

    Google Scholar 

  24. Oates, D. C. (1976). Ph.D. thesis, University of Colorado.

  25. Kao, F. T., and Puck, T. T. (1972).J. Cell Physiol. 80:41–50.

    PubMed  Google Scholar 

  26. Ham, R. G. (1965).Proc. Natl. Acad. Sci. U.S.A. 53:288–293.

    PubMed  Google Scholar 

  27. Puck, T. T., Cieciura, S. J., and Robinson, A. (1958).J. Exp. Med. 108:945–956.

    PubMed  Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  29. Patterson, D., Kao, F. T., and Puck, T. T. (1974).Proc. Natl. Acad. Sci. U.S.A. 71:2057–2061.

    PubMed  Google Scholar 

  30. Boyle, J. A., Raivio, K. O., Becker, M. A., and Seegmiller, J. E. (1972).Biochem. Biophys. Acta 269:179–183.

    PubMed  Google Scholar 

  31. Martin, D. W. (1972).Anal. Biochem. 46:239–243.

    PubMed  Google Scholar 

  32. Warren, L., and Buchanan, J. M. (1957).J. Biol. Chem. 229:613–626.

    PubMed  Google Scholar 

  33. May, M., Bardos, T. J., Barger, F. L., Lansford, M., Ravel, J. M., Sutherford, G. L., and Shive, W. (1951).J. Am. Chem. Soc. 73:3067–3075.

    Google Scholar 

  34. Rabinowitz, J. C. (1963). InMethods in Enzymology, Vol. VI, (eds.) Colowick, S. P., and Kaplan, N. O. (Academic Press, New York) pp. 814–815.

    Google Scholar 

  35. Goldthwait, D. A. (1956).J. Biol. Chem. 222:1051–1068.

    PubMed  Google Scholar 

  36. Ames, B. N., Lee, F. D., and Durston, W. E. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:782–786.

    PubMed  Google Scholar 

  37. Trachewsky, D., and Johnstone, R. M. (1969).Can. J. Biochem. 47:839–845.

    PubMed  Google Scholar 

  38. Henderson, J. F. (1963).Biochem. Biophys. Acta 76:173–180.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oates, D.C., Patterson, D. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: Characterization of Chinese hamster cell mutants defective in phosphoribosylpyrophosphate amidotransferase and phosphoribosylglycinamide synthetase and an examination of alternatives to the first step of purine biosynthesis. Somat Cell Mol Genet 3, 561–577 (1977). https://doi.org/10.1007/BF01539066

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539066

Keywords

Navigation