Skip to main content

Protein Synthesis and Polyamines in Thermophiles: Effect of Polyamines on Nucleic Acid Maintenance and Gene Expression

  • Chapter
  • First Online:
Polyamines

Abstract

Gene expression at both the transcriptional and translational levels is critically dependent upon DNA and RNA structure, particularly in hyperthermophiles, which grow at temperatures above 80 °C. Nucleosome-like structures (histone-bound DNA) from hyperthermophilic Archaea are compacted and stabilized in the presence of multivalent polyamines, suggesting that polyamines play a role in nucleosome maintenance in hyperthermophiles. Multivalent polyamines inhibit the melting of double-stranded DNA and structured RNA. Longer-chain polyamines stabilize double-stranded nucleic acids, whereas branched-chain polyamines stabilize stem-and-loop structures, suggesting that branched-chain polyamines are involved in gene translation. Protein synthesis catalyzed by a cell-free extract of the hyperthermophilic archaeon, Thermococcus kodakarensis, requires the presence of longer- and/or branched-chain polyamines. Translational activity increases in the presence of a variety of linear polyamines and is dependent on chain length. Putrescine and spermidine do not increase translational activity. By contrast, longer polyamines such as homocaldopentamine [3334], caldopentamine [3333], and thermopentamine [3343] increase translational activity. The greatest activity occurs in the presence of N 4-bis(aminopropyl)spermidine [3(3)(3)4] (abbreviation for the number of methylene CH2 chain units between NH2, NH, N, or N+). In vitro experiments using cell extracts from the thermophilic bacterium, Thermus thermophiles, reveal that branched-chain polyamines appear to play a role in peptide bond formation during protein biosynthesis. Thus, it appears that branched-chain polyamines are essential for the proper formation of the 30S initiation complex, which acts as the initial aminoacyl-tRNA in thermophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bowater RP, Aboul-ela F, Lilley DM (1994) Large-scale opening of A+T rich regions within supercoiled DNA molecules is suppressed by salt. Nucleic Acids Res 22:2042–2050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drew HR, Dickerson RE (1981) Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol 151:535–556

    Article  CAS  PubMed  Google Scholar 

  • Endoh T, Kanai T, Imanaka T (2007) A highly productive system for cell-free protein synthesis using a lysate of the hyperthermophilic archaeon, Thermococcus kodakaraensis. Appl Microbiol Biotechnol 74:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Friedman SM, Oshima T (1989) Polyamines of sulfur-dependent archaebacteria and their role in protein synthesis. J Biochem 105:1030–1033

    CAS  PubMed  Google Scholar 

  • Hamana K, Niitsu M, Matsuzaki S, Samejima K, Igarashi Y, Kodama T (1992) Novel linear and branched polyamines in the extremely thermophilic Eubacteria Thermoleophilum, Bacillus and Hydrogenobacter. Biochem J 284:741–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamana K, Hamana H, Niitsu M, Samejima K, Sakane T, Yokota A (1994) Occurrence of tertiary and quaternary branched polyamines in thermophilic Archaebacteria. Microbios 79:109–119

    CAS  PubMed  Google Scholar 

  • Hensel R, Konig H (1988) Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol Lett 49:75–79

    Article  CAS  Google Scholar 

  • Higashibata H, Fujiwara S, Ezaki S, Takagi M, Fukui K, Imanaka T (2000) Effect of polyamines on histone-induced DNA compaction of hyperthermophilic Archaea. J Biosci Bioeng 89:103–106

    Article  CAS  PubMed  Google Scholar 

  • Hou MH, Lin SB, Yuann JM, Lin WC, Wang AH, Kan Ls L (2001) Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure. Nucleic Acids Res 29:5121–5128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2006) Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem (Tokyo) 139:11–16

    Article  CAS  Google Scholar 

  • Imai M, Chikatsu D, Inomata E, Oshima T, Kawai G (2009) Docking simulation of polyamines on a kissing-loop RNA dimer. Nucleic Acids Symp Ser (Oxf) 53:273–274

    Article  CAS  Google Scholar 

  • Knott JM (2009) Biosynthesis of long-chain polyamines by crenarchaeal polyamine synthases from Hyperthermus butylicus and Pyrobaculum aerophilum. FEBS Lett 583:3519–3524

    Article  CAS  PubMed  Google Scholar 

  • Lindsay GS, Wallace HM (1999) Changes in polyamine catabolism in HL-60 human promyelogenous leukaemic cells in response to etoposide-induced apoptosis. Biochem J 337(pt 1):83–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maruyama H, Shin M, Oda T, Matsumi R, Ohniwa RL, Itoh T, Shirahige K, Imanaka T, Atomi H, Yoshimura SH, Takeyasu K (2011) Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis. Mol Biol Cell 22:386–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan JE, Blankenship JW, Matthews HR (1987) Polyamines and acetylpolyamines increase the stability and alter the conformation of nucleosome core particles. Biochemistry 26:3643–3649

    Article  CAS  PubMed  Google Scholar 

  • Morimoto N, Fukuda W, Nakajima N, Masuda T, Terui Y, Kanai T, Oshima T, Imanaka T, Fujiwara S (2010) Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 192:4991–5001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okada K, Hidese R, Fukuda W, Niitsu M, Takao K, Horai Y, Umezawa N, Higuchi T, Oshima T, Yoshikawa Y, Imanaka T, Fujiwara S (2014) Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles. J Bacteriol 196:1866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ono-Iwashita Y, Oshima T, Imahori K (1975) In vitro protein synthesis at elevated temperature by an extract of an extreme thermophile. Effects of polyamines on the polyuridylic acid-directed reaction. Arch Biochem Biophys 171:490–499

    Article  CAS  PubMed  Google Scholar 

  • Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:367–372

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Kawahata S (1983) Homocaldopentamine: a new naturally occurring pentaamine. J Biochem (Tokyo) 93:1455–1456

    CAS  Google Scholar 

  • Oshima T, Hamasaki N, Senshu M, Kakinuma K, Kuwajima I (1987) A new naturally occurring polyamine containing a quaternary ammonium nitrogen. J Biol Chem 262:11979–11981

    CAS  PubMed  Google Scholar 

  • Sandman K, Krzycki JA, Dobrinski B, Lurz R, Reeve JN (1990) HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci USA 87:5788–5791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scholz S, Sonnenbichler J, Schafer W, Hensel R (1992) Di-myo-inositol-1,1′-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett 306:239–242

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uzawa T, Hamasaki N, Oshima T (1993) Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extract. J Biochem (Tokyo 114:478–486

    CAS  Google Scholar 

  • Uzawa T, Yamagishi A, Nishikawa K, Oshima T (1994) Effects of unusual polyamines on phenylalanyl-tRNA formation. J Biochem (Tokyo 115:830–832

    CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson RW, Bloomfield VA (1979) Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry 18:2192–2196

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fujiwara, S., Hidese, R., Inoue, T., Fukuda, W. (2015). Protein Synthesis and Polyamines in Thermophiles: Effect of Polyamines on Nucleic Acid Maintenance and Gene Expression. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_12

Download citation

Publish with us

Policies and ethics