Skip to main content
Log in

Solution of a linearized kinetic model for an ultrarelativistic gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A linearized model of the Boltzmann equation for a relativistic gas is shown to be reducible, in the ultrarelativistic limit and for (1 + 1)-dimensional problems, to a system of three uncoupled transport equations, one of which is well known. A general method for solving these equations is recalled, with a few new details, and applied to the solution of two boundary value problems. The first of these describes the propagation of an impulsive change in a half space and is shown to give an explicit example of the recently proved result that no signal can propagate with speed larger than the speed of light, according to the relativistic Boltzmann equation. The second problem deals with steady oscillations in a half space and illustrates the meaning of certain recent results concerning the dispersion relation for linear waves in relativistic gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. CercignaniPhys. Rev. Lett. 50:1122 (1983).

    Google Scholar 

  2. C. Cercignani Atti V Congresso di Relativité Générale e Fisica della Gravitazione Catania September 1982.

  3. C. Cercignani and A. Majorana,Meccanica 19:175 (1985).

    Google Scholar 

  4. C. Cercignani and A. Majorana,Phys. Fluids 28:1673 (1985).

    Google Scholar 

  5. P. L. Bhatnagar, E. P. Gross and M. Krook,Phys. Rev. 94:511 (1954).

    Google Scholar 

  6. C. Cercignani,Mathematical Methods in Kinetic Theory (Plenum Press, New York, and McMillan, London, 1969).

    Google Scholar 

  7. C. Cercignani,Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh and Elsevier, New York, 1975).

    Google Scholar 

  8. J. L. Anderson and H. R. Witting,Physica 74:466 (1974).

    Google Scholar 

  9. L. Sirovich and J. K. Thurber,Rarefied Gas Dynamics, Vol. 1, J. A. Laurman, ed. (Academic Press, New York, 1963), p. 159.

    Google Scholar 

  10. L. Sirovich and J. K. Thurber,J. Acoust. Soc. Am. 37:32 (1965).

    Google Scholar 

  11. C. Cercignani, Elementary solutions of linearized kinetic models and boundary value problems in kinetic theory, Brown University Report (1965).

  12. K. Aoki and C. Cercignani,ZAMP 35:345 (1984).

    Google Scholar 

  13. S. Chandrasekhar,Radiative Transfer (Oxford University Press, London, 1950).

    Google Scholar 

  14. K. M. Case and P. F. Zweifel,Linear Transport Theory (Addison-Wesley, Reading, Massachusetts, 1967).

    Google Scholar 

  15. M. Krook,J. Fluid Mech. 6:523 (1959).

    Google Scholar 

  16. C. Cercignani,Ann. Phys. (N.Y.) 40:469 (1966).

    Google Scholar 

  17. R. L. Bowden and C. D. Williams,J. Math. Phys. 5:1527 (1964).

    Google Scholar 

  18. K. M. Case,Ann. Phys. (N.Y.) 9:1 (1960).

    Google Scholar 

  19. C. Cercignani and F. Sernagiotto,Ann. Phys. (N.Y.) 30:15 (1974).

    Google Scholar 

  20. C. Cercignani,Ann. Phys. (N.Y.) 20:219 (1962).

    Google Scholar 

  21. N. I. Muskhelishvili,Singular Integral Equations (Noordhoff, N.V. Groningen, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cercignani, C. Solution of a linearized kinetic model for an ultrarelativistic gas. J Stat Phys 42, 601–620 (1986). https://doi.org/10.1007/BF01127731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127731

Key words

Navigation