Skip to main content
Log in

Elevated dark-adapted thresholds in hypopigmented mice measured with a water maze screening apparatus

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

In previous electrophysiological experiments from hypopigmented animals (mice, rats, rabbits), single-unit recordings from both retinal ganglion axons and cells in the superior colliculus have demonstrated an increase in threshold in the dark-adapted state which is roughly proportional to the ocular melanin concentration. In the present study we compared an albino mouse strain which is relatively resistant to light damage and the beige mouse mutant to their wild-type controls in a situation that involved unanesthetized, unrestrained mice as a control to the electrophysiological single unit experiments. We used a six-chambered water maze. Animals were trained to swim to an illuminated ramp until their performances leveled off (about 10 days). The animals were then dark-adapted for 24 h and tested after reducing the luminance level of the water maze. We found that the albino mice failed to find the ramp when the luminance fell to 1.58×10−3 cd/m2 (p≤.0001), the beige mice failed at 2.00×10−4 cd/m2 (p≤.0001), and the normally pigmented controls performed to 5.00×10−5 cd/m2 (p≤.0001). These results support our previous findings that the sensitivity defect in hypopigmented animals is proportional to the degree of ocular hypopigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balkema, G. W. (1988). Elevated dark-adapted thresholds in albino rodents.Invest. Ophthalmol. Vis. Sci. 29:544–554.

    Google Scholar 

  • Balkema, G. W., and Dräger, U. C. (1990). Origins of uncrossed retinofugal projections in normal and hypopigmented mice.Vis. Neurosci. 4:594–604.

    Google Scholar 

  • Balkema, G. W., and Dräger, U. C. (1991). Impaired visual thresholds in hypopigmented animals.Vis. Neurosci. 6:557–585.

    Google Scholar 

  • Balkema, G. W., and Pinto, L. H. (1982). Electrophysiology of retinal ganglion cells in the mouse: A study of a normally pigmented mouse and a congenic hypopigmentation mutant, pearl.J. Neurophysiol. 48:968–980.

    Google Scholar 

  • Balkema, G. W., Mangini, N. J., and Pinto, L. H. (1983). Discrete visual defects in pearl mutant mice.Science 219:1085–1087.

    Google Scholar 

  • Balkema, G. W., Mangini, N. J., Pinto, L. H., and Vanable, J. W., Jr. (1984). Visually evoked eye movements in mouse mutants and inbred strains. A screening report.Invest. Ophthalmol. Vis. Sci.,25:795–800.

    Google Scholar 

  • Balkema, G. W., Pinto, L. H., Dräger, U. C., and Vanable, J. W., Jr. (1981). Characterization of abnormalities in the visual system of the mutant mouse pearl.J. Neurosci. 1:1320–1329.

    Google Scholar 

  • Cone, R. A. (1963). Quantum relations of rat electroretinogram.J. Gen. Physiol. 46:1267–1286.

    Google Scholar 

  • Creel, D. J., Conlee, J. W., and King, R. A. (1990). Dark adaptation in human albinos,Clin. Vision Sci. 5:81–85.

    Google Scholar 

  • Dodt, E., and Echte, K. (1961). Dark and light adaptation in pigmented and white rat as measured by electroretinogram threshold.J. Neurophysiol. 24:427–445.

    Google Scholar 

  • Graves, A. L., and Green, D. G. (1985). Light exposure can reduce selectively or abolish the C-wave of the albino rat electroretinogram.Invest. Ophthalmol. Vis. Sci. 26:388–393.

    Google Scholar 

  • Green, D. G. (1971). Light adaptation in the rat retina: Evidence for two receptor mechanisms.Science 174:598–600.

    Google Scholar 

  • Green, D. G., and Powers, M. K. (1982). Mechanisms of light adaptation in rat retina.Vision Res. 22:209–216.

    Google Scholar 

  • Green, D. G., de Tejada, P. H., and Glover, M. J. (1991). Are albino rats night blind?Invest Ophthalmol. Vis. Sci. 32:2366–2371.

    Google Scholar 

  • Hayes, J. M., and Balkema, G. W. (1993). Visual thresholds in mice: Comparison of retinal light damage and hypopigmentation.Vis. Neurosci. 10: (In Press).

  • Hellner, K. A. (1966). Das adaptive verhalten der mausenetzhaut.Arch. Ophthalmol. 169:166–175.

    Google Scholar 

  • La Vail, J. H., Nixon, R. A., and Sidman, R. L. (1978). Genetic control of retinal ganglion cell projections.J. Comp. Neurol. 182:399–421.

    Google Scholar 

  • La Vail, M., Gorrin, G. M., Repaci, M. A., Thomas, L. A., and Ginsberg, H. M. (1987). Genetic regulation of light damage to photoreceptors.Invest. Ophthalmol. Vis. Sci. 28:1043–1048.

    Google Scholar 

  • Linden, R., and Pinto, L. H. (1985). Developmental genetics of the retina: Evidence that the pearl mutation in the mouse affects the time course of natural cell death in the ganglion cell layer.Exp. Brain. Res. 60:79–86.

    Google Scholar 

  • Mangini, N. J., Vanable, J. W., Williams, M. W., and Pinto, L. H. (1985). The optokinetic nystagmus and ocular pigmentation of hypopigmentation mouse mutants.J. Comp. Neurol. 241:191–209.

    Google Scholar 

  • Noell, W. K. (1980). There are different kinds of retinal damage in the rat. In Williams, R. P. and Baker, B. N. eds.The Effects of Constant Light on Visual Processes, Plenum Press, New York, pp. 357–387.

    Google Scholar 

  • Noell, W. K., Walker, V. S., Kang, B. S., and Berman, S. (1966). Retinal damage by light in rats.Invest. Ophthal. 5:450–473.

    Google Scholar 

  • Pak, M. W., Giolli, R. A., Pinto, L. H., Mangini, N. J., Gregory, K. M., and Vanable, J. W. (1987). Retinopretectal and accessory optic projections of normal mice and the OKN-defective mutant mice beige, beige-J, and pearl.J. Comp. Neurol. 258:435–446.

    Google Scholar 

  • Sanderson, K. J., Guillery, R. W., and Shackelford, R. M. (1974). Congenitally abnormal visual pathways in mink (Mustela vision) with reduced retinal pigment.J. Comp. Neurol. 154:225–248.

    Google Scholar 

  • Shatz, C. J., and Kliot, M. (1982). Prenatal misrouting of the retino-geniculate pathway in Siamese cats.Nature 300:525–529.

    Google Scholar 

  • Suzuki, H., and Pinto, L. H. (1986). Response properties of horizontal cells in the isolate retina of wild-type and pearl mutant mice.J. Neurosci. 6:1122–1128.

    Google Scholar 

  • Williams, M. A., Gehrson, J., Fisher, L. J., and Pinto, L. H. (1985a). Synaptic lamellae of the photoreceptors of pearl and wild-type mice.Invest. Ophthalmol Vis. Sci. 26:992–1001.

    Google Scholar 

  • Williams, M. A., Pinto, L. H., and Gehrson, J. (1985b). The retinal pigment epithelium of wild-type (C57BL/6J +/+) and pearl mutant (C57BL/6J pe/pe) mice.Invest. Ophthalmol. Vis. Sci. 26:657–669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, J.M., Balkema, G.W. Elevated dark-adapted thresholds in hypopigmented mice measured with a water maze screening apparatus. Behav Genet 23, 395–403 (1993). https://doi.org/10.1007/BF01067442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067442

Key Words

Navigation