Skip to main content
Log in

Numerical simulation of submicron photolithographic processing

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A complete numerical simulation package for submicron photolithography is described in depth. Four of the computational steps are analyzed: aerial image generation, exposure, postexposure bake, and dissolution. An application to bar printing over a MOSFET gate is described. In addition, the utility of phase-shift masks is described, and the effects of aberrations are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu, S. V., and Barouch, E. (1988). Standing waves in optical positive photoresist films: A new approach,J. Opt. Soc. Am. 5, 1460.

    Google Scholar 

  • Babu, S. V., Barouch, E., and Bradie, B. (1989). Three dimensional profile simulation for positive photoresists,Proc. SPIE 1086, 495.

    Google Scholar 

  • Babu, S. V., and Barouch, E. (1989). Optical microlithography: Some analytical results,J. Imaging Sci. 33, 193.

    Google Scholar 

  • Bradie, B. (1990).Comprehensive Simulation of Photolithographic Processes in Two and Three Dimensions, Ph.D. thesis, Clarkson University.

  • Born, M., and Wolf, E. (1980).Principles of Optics, 6th ed., Pergamon, New York.

    Google Scholar 

  • Dill, F. H. (1975).IEEE Trans. Electron Devices ED-22, 440–444.

    Google Scholar 

  • Hopkins, H. H. (1953). On the diffraction theory of optical images,Proc. R. Soc. London, Ser. A 217, 408–432.

    Google Scholar 

  • Jackson, J. D. (1975).Classical Electrodynamics, 2nd ed., J. Wiley, New York.

    Google Scholar 

  • Karniadakis, G. E., Orszag, S. A., Rønquist, and Patera, A. T. (1991). Spectral element and lattice gas methods for incompressible fluid dynamics, inAdvances in Numerical Analysis, Gunzburger, M., and Nicolaides, R. (eds.), Cambridge University Press (to appear).

  • Lin, B. J. (1980). Partially coherent imaging in two dimensions and the theoretical limits of projection printing in microfabrication,IEEE Trans. Electron Devices ED-27.

  • Mack, C. A. (1985). PROLITH: A comprehensive optical lithography model, Optical Microlithography IV,Proc. SPIE 538, 207.

    Google Scholar 

  • Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed. Algorithms based on Hamilton-Jacobi formulation,J. Comput. Phys. 79, 12–49.

    Google Scholar 

  • Patera, A. T. (1984). A spectral element method for fluid dynamics: Laminar flow in a channel expansion,J. Comput. Phys. 54, 468–488.

    Google Scholar 

  • Yeung, M. S. (1988). Modeling high numerical aperture optical lithography,Proc. SPIE 922, 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barouch, E., Cahn, J.W., Hollerbach, U. et al. Numerical simulation of submicron photolithographic processing. J Sci Comput 6, 229–250 (1991). https://doi.org/10.1007/BF01062811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062811

Key words

Navigation